Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

Memory Characterization of Workloads Using Instrumentation-Driven Simulation
A Pin-based Memory Characterization of the SPEC CPU2000 and SPEC CPU2006 Benchmark Suites

Aamer Jaleel

Intel Corporation, VSSAD
{aamer.jaleel} @intel.com

Abstract

There is a growing need for simulation methodologies to
understand the memory system requirements of emerging
workloads in a reasonable amount of time. This paper
presents binary instrumentation-driven simulation as an
alternative to conventional execution-driven and trace-driven
simulation methodologies. We illustrate the use of
instrumentation-driven simulation (IDS) wusing Pin to
determine the memory system requirements of workloads from
the SPEC CPU2000 and SPEC CPU2006 benchmark suites.
In comparison to SPEC CPU2000, SPEC CPU2006
workloads are an order of magnitude longer (in terms of
instruction count). Additionally, SPEC CPU2006 comprises of
many more memory intensive workloads that require more
than 4MB of cache size for better cache performance.

1. Introduction

Processor architects continue to face key design decisions in
designing the memory hierarchy. With several emerging
application domains, understanding the memory system
requirements of new applications is essential in designing an
efficient memory hierarchy. Such characterization and
exploratory studies require fast simulation techniques that can
compare and contrast the performance of alternative design
policies. For memory system studies, this paper proposes
instrumentation driven simulation as an alternative to existing
execution-driven and trace-driven methodologies.

Simulation is a common methodology that is used to
identify performance bottlenecks in existing systems as well
as design space exploration. There exist many simulators and
software tools to investigate the memory system performance
of applications. In general, memory system simulators fall into
two main categories: trace-driven or execution-driven. With
trace-driven memory system simulation, address traces are fed
off-line to a memory system simulator (e.g. Dinero IV [3]).
Such simulators rely on existing tools to collect memory
address traces and log them to file for later use. Execution-
driven cache simulators on the other hand rely on functional/
performance models to execute application binaries. The
memory addresses generated by the functional/performance
model are fed in real time to a memory system simulator

modeled within the functional/performance model. In general,
functional models of modern ISAs are slow and can be
complex to build. As a result, trace-driven simulation has
become popular for conducting memory system studies [15].

The usefulness of trace-driven simulation, however, lies in
the continued availability of address traces to study the
memory system requirements of different workloads. With
several emerging application domains, understanding the
memory behavior and working set requirements of new
applications requires the ability to generate address traces.
Address trace generation for a target ISA can require
sophisticated hardware tools (e.g. bus tracer) or a functional
model that supports the target ISA and the requirements of the
workload (e.g. the functional model must provide support for
multiple contexts if executing a multi-threaded workload).
However, there are drawbacks with these mechanisms.

Hardware tools such as bus tracers only capture address
traces that reach the system bus. Consequently, the address
trace collected is incomplete since address requests that hit in
the processor caches are filtered out. On the other hand,
address trace generation using function models represent only
a small region of the application. Additionally, a practical
problem with collecting memory address traces with either
mechanism is that they can become very large, potentially
occupying several gigabytes of disk space even in their
compressed formats.

To address the drawbacks of current simulation
techniques, this paper proposes the use of instrumentation
driven simulation (IDS) to conduct memory system studies.
Since instrumentation-driven memory system simulation is

fast, robust, and simple, users can write simple tools to

characterize the memory system requirements of almost any
application at MIPS (as opposed to KIPS) speed. In doing so,
IDS can support fiull run application studies.

This paper presents the use of Pin [7] based IDS to conduct
full-run memory system studies of workloads from the SPEC
CPU2000 and SPEC CPU2006 [4] benchmark suites. Our
studies reveal that on average, workloads in SPEC CPU2006
have an instruction count that is an order of magnitude larger
than the SPEC CPU2000 workloads. Additionally, SPEC
CPU2006 workloads have larger memory working-set sizes

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

with most memory-intensive workloads requiring more than
4MB of cache size.

The rest of this paper is organized as follows. Section 2
provides the benefits and caveats of using IDS. Section 3
describes the simulation methodology and then presents a
memory performance comparison of the SPEC CPU2000 and
SPEC CPU2006 workloads. Finally Section 4 provides a
summary of our work.

2. Instrumentation-Driven Simulation (IDS)

Binary instrumentation is a technique for inserting extra code
into an existing application to collect run time information
from an application. The binary instrumentation tool
determines the type of run time information to be collected.
Typically, binary instrumentation tools have commonly been
used for the performance analysis of applications. However,
binary instrumentation systems can also serve as an attractive
tool for conducting computer architecture research studies.
For example, binary instrumentation tools can model simple
simulators that are instrumentation-driven.

In addition to being simple, binary instrumentation
systems are fast and robust. Since binary instrumentation
normally occurs at native execution speeds, IDS can also
occur at MIPS speed. Unlike existing execution and trace-
driven simulators, IDS supports quick exploratory studies by
simulating applications run to completion. Additionally, since
binary instrumentation systems are robust for all kinds of
applications, users can conduct instrumentation-driven
simulation with any kind of application, no matter its
complexity. For example, users can study complex
applications such as Oracle or Java.

2.1. Caveats with Instrumentation-Driven Simulation

As with any simulation methodology there are some tradeoffs
with the instrumentation-driven approach.

* Instrumentation Overhead: Instrumentation involves
injecting extra code dynamically or statically into the
target application. The additional code causes an
application to spend extra time in executing the original
application. If the application has the property that it
changes its behavior based on the amount of time spent in
execution, the native execution and instrumented
execution of the application can be different. If the
differences are significant, IDS is unsuitable for such
class of applications. Additionally, for multi-threaded
applications, instrumentation can modify the ordering of
instructions executed between different threads of the
application. As a result, IDS with multi-threaded
applications comes at the lack of some fidelity.

o Lack of Speculation: Instrumentation only observes
instructions executed on the correct path of execution. As
a result, IDS may not be able to support wrong-path

execution. If speculation is desired, special purpose tools
to emulate a branch predictor can be implemented [11].

* Repeatability: Since instrumentation occurs on real
operating systems, multiple runs of the same workload on
the same system are not identical. If repeatability is
desired, special purpose tools can be implemented [10].

» User-level Traffic Only: Current binary instrumentation
tools only support user-level instrumentation. Thus,
applications that are kernel intensive are unsuitable for
user-level IDS. For such applications system level
simulators [6, 8] or instrumentation systems [2] are ideal.

* Native System Limited: Since IDS is conducted on a
native system, the fidelity of the simulation model can
depend on the characteristics of the native system. For
example, simulating a system that has four active
hardware threads on a system that only supports two
active hardware threads may incorrectly interleave the
order in which instructions are executed between
different hardware threads. This is because the native
system time slices the simulated threads while a real
simulated system executes the threads simultaneously. To
ensure correct timing, this issue can be resolved by
modeling a thread scheduler [11].

Despite the above mentioned caveats, IDS is an excellent
methodology for initial exploratory studies as it is _fas?, robust,
and simple.

3. Memory Behavior of SPEC CPU2000 and SPEC
CPU2006

For purposes of this study, we use IDS for characterizing the
memory system behavior of both the SPEC CPU2000 and
SPEC CPU2006 benchmark suites. The workloads in the
SPEC suite are attractive for IDS as they are unaffected by the
caveats mentioned in the previous section. Existing work has
studied the memory behavior of SPEC CPU2000[13]. For the
purpose of uniformity in ISA, compilers and simulation
methodology, we present a comprehensive cache performance
study of all workloads from both SPEC CPU2000 and SPEC
CPU2006 run to completion. We first describe the
experimental methodology before presenting our results.

3.1. Experimental Methodology

We use Pin, a dynamic binary instrumentation system for
Linux, MacOS, and Windows binary executables for Intel®
IA-32 (x86 32-bit), IA-32E (x86 64-bit), and Itanium®
processors. Pin is similar to the ATOM[14] toolkit for Alpha
processors. Like ATOM, Pin provides an infrastructure for
writing program analysis tools called pin tools.

For our workload characterization studies we use CMP$im
[5], an instrumentation driven system simulator for CMPs.
CMPS$im can characterize application instruction profiles and
conduct full run cache performance studies of applications at

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

SPEC CPU2000

(suorqyiq)
suononnsuy

DAV
Jorasimdnm
gmorida
doeyd-ada
CUBIPUD[Xd}I0A
CURIPUS['X)I0A
JUBTPUS["X3LIOA
Jorjjomy
Joruims
JOI'YorRIXIS
yooy1ad yuqied
pueroyeuryuqprad
[reuyip-yuwqpad
LS6™wqpad
0$8wqpad
yOLwqpad
sggmuqriad
Joriasied
Jorpusw
Joresow
Joryow
Jorseon|
2omos-diz3
wopuerdiz3
werdoxd-diz3
Sordiz8
oyderd-diz3
Qqe[19s'003
91eI39)u1003
1dxa003
002993

991998
Jorded
JoreSes
Jarpgeuy
Joroara0e)
Jorayenba
IOIOWIYSNI U0
eA1lexyuoa
3009°U0d
Jorkyen
do1nos-zdizq
werdoxd-zdizq
oyderd-zdizq
gorue
[Jore
Jorisde
Jornydde
Jorduue

TceL

5000
4000
0f

SPEC CPU2006

(=3
Y
S O

(suoriq)
suononnsuy

1000

DAV

dwsnoz dwsnoz
Jorywqoue[ex
[ST3IM

0JU0)"0JU0)

ue gxuryds
puerpueroads
Jorxajdos
0s-spd-xajdos
Jorsuafs
JorAKeirod
[reunids youaqred
[rewyip youaqad
wedsyoayo youaqprod
ddyouwo-ddyouwio
puleupuIeu
dwrgns-opu
Jorjour
Jormmjuenbqry
PEOISA'PEI[SI]
wqprwqj

oI WLy
cydu-touruy
urew”sss'JoIy97y
urewr Jorjaly9zy
duljeseq Jarjaly9cy
SORWOIZ SORWOIT
PI0A2I) YWqO3
JI0A1) YWQOT
791095 Wqo0T
S3uuywqo;
€1X¢[Wqo3
Qe[108'008

+0s°093

€78008

71dxa'008
1dx9:008
199p-do-003
¥09d4)-0"008
007998

991993

wnIjozery ssoures
+gnoozy ssowes
QUIS0)Ad'ssaured
JoITIIesp
onse[doasiazodAy X1nopeo|
INAVYOUsq NAVSsmoed
1x9) zd1z
domos-zdizq
wreIsox %&Nn
Ayaq-gdiz
pauIquiod zdizq
udpIyo-zdizq
SOABMQ'SOABMq
SIOALITEISE
8pQCse 31 IeIse
Jorq g suion

MEM read/write
MEM write

OEEECNNNERECCCR e RN RN RO O

[MEM read
Hl MEM none

]

DAV
amorda

opadjuqpad
pueIRwwqpad
Treuyy,
L56™uiqpad
0s8~wiqped
FOLwqped
sesopuqriad
Jarmsied
Jorpow
somos'diz3
wopu
wessoid-dizs
Sopdiz3
owqdessdizs
qepos208
qeagaurood
%2208
007993
9917008
Jorded
ToWysNIT0d

eAifeyuoo
3005°u0>
Jorfyen
somoszdizq
wesSoid zdizg
owdess-zdizq

100 —

75—
50—
25—

0

DAV
Jorasimdnm
Jorjom
Jorunms
JorjoRnXIS
Jorpusuw

Jaresowr

o
&

Jorppsies
Jorpeeuy
Joroaony
Joraenbo
garue
Jarue
Jorisde
Jorndde

Jordunue

100 —

uonNQLISI(] UONONISUL

0

EEe

HARRREERMNNT

DAV
Joruqourex

P youaqpIad
wredsypayo puaqpad
ddiouwo ddiauto

Jorjow

Jorumuenbqy

oxjarIduIuIYy

cydur oy

urewr sssTapo7Y

urew jor UBWAIO) JOIH9TY
QuUIfAsEq JoI UBWAIONJOIHOTY
pioadn-wiqod

21080 jwqos

721005 Yuiqo3

suuyuwiqos

€1XE[Wqos.

PEC CPU2006

Joop-doraad
$oadk1-208
002908

2omos-zdizq
weiSoid-zdizq

SIOALILISE
SHOTsoNEISIg TeIse

100 —

5
50—
25—

e e e R E e R

PEC CPU2006 - FP
[THELTTRNNHT

DAV
dwsnozduwsnoz
ISIpIM

0ju0) 0Ju0}
puegxuryds
puerpuvioads

jorxojdos

0s-spd-xardos
Jorfeinod
purvupuieu
dungns-ojnu
peallsa pealisal
wqpuqp

1015°50RWOIT

winijozeLy ssawes
+Zno0gY ssawes
Juis0)£a'ssowed
Jarqyresp

onseidoosiaidAy-

nofes

INQVYOUQ NV SIOED
SOABMQ'SIABM]

Jerqradswon

100 —

7
50
25—

uonnqLysiq uononnsuy

0

instruction

Count and Instruction Profile of SPEC CPU2000 and SPEC CPU2006 workloads. The figure shows the

f the applications when run to completing using the reference input sets.

Dynamic Instruction

Figure 1

instruction mix o

count and

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

the speeds of 4-10 MIPS. We use CMPS$im in single-core
mode to conduct detailed characterization studies of the SPEC
workloads. All workloads from the SPEC CPU2000 and
SPEC CPU2006 benchmark suites are run to completion using
their reference input sets. We also collect IPC numbers for the
two suites using performance counters on an Intel® Xeon®
2.8 GHz system with a two-level cache hierarchy: 32KB L1
cache and 512KB L2 cache. All workloads are compiled using
optimization flags -O3 on a Red Hat 32-bit Linux system
using Intel’s C/C++ and Fortran compilers.

For each workload, we conduct a cache sensitivity analysis
using the stack distance [9] approach to simulate multiple
cache sizes in one run. We modeled a 256-way 8MB
instruction cache and a 2048-way 128MB data cache. Both
use 64B line size and model true LRU replacement policy.
The simulated cache configurations support cache sizes that
are direct mapped 32KB, 2-way 64KB, 4-way 128KB, and so
on. After presenting the cache sensitivity study, we also
present the cache performance of each workload for a three
level cache hierarchy: 4-way 32KB separate L1 instruction
and data caches, a unified 8-way 256KB L2 cache, and finally
a unified 16-way 2MB L3 cache. All caches in the simulated
hierarchy use 64B line size, are non-inclusive, allocate on
writes, and use writeback and true LRU replacement policy.

3.2. Application Instruction Profile

Figure 1 shows the total instruction count for each
workload in the two suites. The average instruction count for
the SPEC CPU2000 benchmark suite is 131 billion while that
of SPEC CPU2006 is 1276 billion—an order of magnitude
higher. The increase in instruction count by SPEC has been in
response to significant differences observed in run time as a
result of small fluctuations in the system state or measurement
conditions [1]. However, the large run lengths of SPEC
CPU2006 now present interesting challenges in choosing
representative regions of the workloads for conducting
experiments using detailed performance simulators.

To understand the contribution of instructions that
reference memory, Figure 1 presents the instruction profile for
the floating-point and integer benchmarks distributed into four
categories: instructions that do not reference memory (ALU
operations only), instructions that have one or more source
operands in memory (MEM read), instructions whose
destination operand is in memory (MEM write), and
instructions whose source and destination operands are in
memory (MEM read and write). On average, roughly half of
the instructions reference memory. Of the instructions that
reference memory, very few (< 1%) both read from and write
to memory while 20% of total memory instructions write to
memory. This behavior is consistent for both SPEC CPU2000
and SPEC CPU2006. The large proportion of instructions that
reference memory is indicative of register spills to the stack
due to the limited registers available on 32-bit x86 systems.

3.3. Processor Performance

To identify the memory bound workloads, Figure 4
presents the CPI values of the two suites collected using
performance counters on the 2.8 GHz Xeon system. The
average CPI of the SPEC CPU2000 workloads is 1.97 while
that of SPEC CPU2006 is 2.16. The higher CPI of SPEC
CPU2006 is a result of larger problem set sizes [1]. Table 1
categorizes workloads based on their CPI values: CPI values
greater than 8, CPI values greater than 4 but less than 8, and
CPI values greater than 2 but less than 4. The table shows that
SPEC CPU2006 represents more applications that are
memory bound (higher CPI values) than SPEC CPU2000. The
primary memory bound SPEC CPU2000 workloads (with
CPIs greater than 4) were art, equake, mcf, swim, and vpr
(route input). Comparatively, the memory bound SPEC
CPU2006 workloads are: GemsFDTD, astar (Biglakes2048
input), cactusADM, Ibm, leslie3d, libquantum, mcf, milc,
omnetpp, and soplex. To understand the memory system
requirements of these workloads, the next section presents
workload sensitivity to different cache sizes.

3.4. Cache Performance

We study working set analysis of the workloads by studying
their cache performance with different cache sizes. We then
present the cache performance of the SPEC workloads for a
three-level cache hierarchy that is representative of modern
high performance processors.

3.4.1.Working Set Size

Figures 2-3 and 5-6 present the instruction and data cache
sensitivity studies for all workloads in the two suites. The
figures present cache size in megabytes (MB) on a logarithmic
x-axis and misses per one thousand (MPKI) instructions on
the y-axis. Note that the y-axis varies significantly between
different workloads.

We use a stack distance approach to simulate the
performance of multiple cache sizes in one simulation run by
using a single large cache. In doing so, the stack distance
approach not only provides cache performance for multiple
cache sizes but also provides an indication of the total memory
footprint of each workload. For example, if the workload has a
total instruction and data footprint that is smaller than the
simulated large cache, the amount of valid data in the cache
(assuming the cache is invalid at simulation start) represents
the total memory footprint of the workload. This information
is represented on the cache sensitivity graphs for workloads
where the last x-axis co-ordinate ends before the simulated
large cache size (8MB for instruction and 128MB for data).
For example, the last x-coordinate data cache point for art
(Figure 2d) occurs at 4MB, implying that it has a total data
memory footprint size of approximately 4MB. Similarly, art
has an instruction memory footprint size of approximately

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

— T — — T — — — T — T
ammp.ref apsi.ref .
\ applu.ref ol artrefl 1. a2]
Lot \\ 4 sk Data Stream
£ \ [N]
\ A ./
e \ 18 o \\ 4
i \ \ }
[A A | J
g \ 1
= 5k \ 47 sk Instr Stream \ ‘
/ [1 W]
L\g LT CheszOm) e N AP, I A
R R U N S SR v R RO IR Ry RO RN R R R R RO
(a) ammp.ref (b) applu.ref (c) apsi.ref dl) art.refl (d2) art.ref2
L L L L L B L L L L L B E T e e e e P — T — T
s \ bzip2.graphic 4 sk \ bzip2.program i bzip2.source . crafty.ref con.cook
\ |
\ \ i J |
\ \
\ \
\ \ \ i B |
42 L \
N N\,
LY LY PRI) . . L P T O R
WP R BN b e B @ s SRR R AR O N R S NIRRT R O N S R N SR CRC Y R IR O R R R R ORI e
(el) bzip2.graphic (e2) bzip2.program (e3) bzip2.source (f) crafty.ref (gl) eon.cook
— T T T T T T I e e e e — — T — T P
conkajiya conushmeier \ cquakeref ST hceroier fimaddret
L i i 1o S 4 “1“
RS B \
g B é ol T e, 4
£ R z
H \ E 15 |
i+ 4 1.]
o e D WA O R e] P L i R 1
WA AR AR AT Y 3 A % e B @ g R IR O N S S S R RO R R R R RO R R
(g2) eon.kajiya (g3) eon.rushmeier (i]) equake.ref (1) facerec.ref O) fma3d.ref
T T
galgel.ref o gaprel gec 166 ce.200 gecexpr

il \ 1 4 sk \ 4. sk]
z N A\ \ \ \
Es R \ 1z of \ R 1
H \\- .. '\.“ \ \\
For | 14 4 \ 1
| L | B sk \ 4 sk \ 4
o ; g | A A
R R O O R I SO STy RO O R SRR Oty PO SR S SRR ey T e A R BV R Y
(k) galgel.ref (1) gaps.ref (ml) gee.166 (m2) gee.200 (m3) gee.expr
gec.integrate gec.scilab : gzip.graphic eziplog 1 ‘gzip.program
M. 1 s g \
b . it \ E
18 o \ {8 o | ,
4 g \ 1 \
f \ \
| sk \ i |]
sk | R ™~ st \ E \
\ \ \ \
B S I T I B O o S Sy e S OB S e S S e et S S M S S S ey
(m4) gcc.integrate (m5) gee.scilab (nl) gzip.graphic (n2) gzip.log (n3) gzip.program
— T — T T A e e e e P — T — T
gzip.random gzip.source lucas.ref mefref mesa.ref
\ K\“
s \ e
. L . I T R S S SR Ly e . L L I
R IR O N I R SRR R TRy R IR Ca N R RN KRR O R I R ROy RN R RS R
(n4) gzip.random (n5) gzip.source (0) lucas.ref (p) mcf.ref (q) mesa.ref
—— T B T o e e e e T T — T — — T T —
mgrid.ref parser.ref. perlbmk.535 . perlbmk.704 perlbmk.850
H s g Rpns i
£ \ i \ \
% L. A \ 40]
: ™\ = N 1 \ ~
\ \ “~
L bedet L0 Sy M, L L P U L L N W . L ol L | T
R RO N IR SR S R O R R SR S ey R R R S S e R RO R R By T P Y Y e B oo
(r) mgrid.ref (s) parser.ref (t1) perlbmk.535 (t2) perlbmk.704 (t3) perlbmk.850
———————T——T—T—T—— — T ————T—T—T T T BT — T ———
1 perlbmk.957 perlbmk.diffmail perlbmk.makerand perlbmk.perfect 1 sixtrack.ref
\ o it] \
st \ R sk]
\ -~ N
L] ~.]
1 Es ,
\ | z
15 \ 1 \ \ R
\ \ | 3
\ \ | 2t]
I3 \. 1 \ | L
‘u - 1
osf 1 L \ 1 ol]
R R T A R O IR B S e R i
(t4) perlbmk.957 (t5) perlbmk.diffmail (t6) perlbmk.makerand (t7) perlbmk.perfect (u) sixtrack.ref

Figure 2: SPEC CPU2000 Cache Sensitivity: The figure shows the cache performance of each workload as a function of cache size. The y-axis presents
workload MPKI and the x-axis presents the cache size in megabytes (MB). All workloads were run to completion using the reference input sets.

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

T
vortex.lendian3

\,

3

T
DR

-

(x3) vortex.lendian3

W

s

T
vortex lendian2

AN

1
N AR

(x2) vortex.lendian2

RGOSR

wupwise.ref

Sy

X

.
K3

L
B

(z) wup\wise.ref

- __\

=

ORSRG

o

vortex.lendian1

o

T
DR

IO

(x1) vortex.iendianl

£

vpr.route

e

o

T &

PR

(y2) vpr.route

I
ROR RN

twolfref

L
ey

L
3

RS

LU

(w)‘)twol/f.ref

I
RIS

vpr.place

I
R

T Y e B

(y1) vpr.place

A

\
L

ey
RTINS

swim.ref

Data Stream

AN

Instr Stream

B

fit
L

Cache Size (MB)

(v) swim.ref

n
R RO,

The figure shows the cache performance of each workload as a function of cache size. The y-axis presents

workload MPKI and the x-axis presents the cache size in megabytes (MB). All workloads were run to completion using the reference input sets.

vity

SPEC CPU2000 Cache Sensiti

Figure 3

€Sl

L6'1
89'1
vy
69'1
€6'1
1Tl
98'l
(434
YL'L

€01

611

67T
€6°C
LT

DAV
Jorosimdnm
norida
qoerd-ada
CUBIPUD["XI)IOA
CUBIPUS[XOHIOA
[UBIPUS'XO1I0A
Jarjjomy
Jorumms
JOryoRNXIS
1oo310d ywqpred
pueroyew ywqiod
[rewyyp-wiqriad
LS6™wqpad
058 uqriod
0L wqped
gegiqyad
Joriosred
Jorpusu
Joresow
Joryowr
Jorseon|
doinos diz3
wopuerdiz3
weidoxd-diz3
Soy-diz3
omydeid-diz3
qe[19s°993
9jeIgojurod3
1dx9°003
007993
991908
Jorde3
JoroSes
Jorpeeuy
Joroa100e)
Jorayenbo
JIOTOUIYSNI U0
eA1feyuoo
3]000'U0d

Jor ke
so1nos zdizq
weidoxd-zdizq
omydeid-zdizq
Jorye

[Jorre

Jorisde
Jornydde
Jordwuwe

IdD

DAV
dwsnoz-dwisnaz
Jarywqoue|ex
[STJIM
0JU0)0JU0}

pue gxuryds
puerpuerdads
Jorxardos
05-spd-xajdos
Jorguals
JorAeisod
[reunijds-youaqprad
JrewgyIp gouaqiad
wedsyoayo youaqpad
ddyouwo*ddyoutuo
puIBU"puIRY
dungns-opiu
Jorpw
Jeruwmuenbqr
PERISII'PEI[SY
wqywqy

013" oIy
gyduouuy
ureuwr sssJaIp9zy
urew JOIJory97y
oureseq jarjary9y
SOBWIOIS SORWOIT
ploAd1yywqod
910A21) Ywqo3
791008 wWqoT
S3urywqo;
€1X¢[wqod
Qe[19s003
05003

€78003
73dxa:003
1dxe008
109p-do-003
309d43-0003
007998

991093
wnijozeLs) ssaured

+7No0gY ssawed
QUIS0JA0"sSAWT
Jaraesp

onsejdoasiazadAy xinoes
INAVYPUIG' N VSmoed

X9y zdiz
ooSOm.m 12q
weSoid-gdizq
Kuaqyy zdiz
paurquiod zdizq
uoyaIyo zdizq
SIARMQ'SIABMQ
SIDALTTBISE
8p(TsoNe31g Teise
Jrdraswon

The figure shows the CPI values for the two suites gathered using

Performance of SPEC CPU2000 and SPEC CPU2006 Workloads
performance counters on a 2.8GHz Xeon system. The table below presents the memory bounds workloads separated into three categories.

Figure 4

Memory Bound Workloads

Table 1

SPEC CPU2006

SPEC CPU2000

CPI
>8

mcf

art, mef

GemsFDTD, astar.BigLakes2048, cactusADM, lbm, milc, omnetpp, soplex

equake, swim, vpr.route

astar.rivers, bwaves, bzip2.liberty, gcc, gobmk, hmmer.nph3, leslie3d,

ammp, applu, apsi, fma3d,

libquantum, sphinx3, xalancbmk, zeusmp

lucas, mgrid, twolf

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

T — — T — T —r—— T T T
GemsFDTD.ref astar. BigLakes2048 astar.rivers bwaves.bwaves bzip2.chicken
N il . 1
S \ 4, sk \ 1 K 1
\ \ 1
\ Data Stream A T ee— -
t - 4E b \ R 4E b ~ E
o \ -
3 1
H N
of 4% 1 Sk]
Instr Stream sk i
Cache Size (MB)
ESTEIh- M T . T, - D DU R . L .
RERIRC Earac T e PR e Y et T v s PP s TE T e ‘e ars sy
(a) GemsFDTD ref (bl) astar BlgLa.kes2048 (b2) astar.rivers " (¢) hwaves bwaves (dl) ble2 chlcken
T T T — T T — T — BT T T
ban.oombmcd bzlpZ hbcny 3 bzip2 program bzip2.source bﬂpZ text
\ \
sh A4, sk - q4. o 4. sk 1
., .
i \ Y \ i \
Ee 4E o 48 o 4E of \ E
AN \ \ ™ b
i ™ i AN
T @ W e RER AP ey IR R O R S SR RORR \\ B gy R R O S S TR g
(d2) b21p2 combmed (d3) bzip2.liberty (d4) bzip2.program (d5) b21p2 source (d6) bzip2.text
T T
L ,“ cactusADM benchADM | i m Y‘ " calculix hyperviscoplastic. | ' T e T T T T T gmesshdocwzs
é 6 1 \\ 4
o 157 \\ \ 1
i \ -]
H \
WL 17 b 47 s R
T L PP . SRR L L
e B RIS RS Aoy © o B B
(e) cactusADM benchADM [63) calcuilx.hypervnscoplastlc () dealII ref (h2) gamess h200u2+
L e e S D N T L P — —— T ———
1 \
\ 1o N]
x : \,
\ 4
WL \ . 17 & __ 47 ¢ \)
- \4 J\\\A‘ — N L L \‘J e ||| Ly
RN N SR RORCI [CRE e N KOS)
(h}) gamess triazolium (i2) gee.200 (13) gee.c typeck (14) gcc cp decl
T T T T T T T T T T T 1T T
gec.expr gee.g23 N goc.s04 | gcescila |
AN \ ‘\\
ish A4 sk \ o 1 . i
] N ., \ A 1
i \ | \ |
L 15 \ ~] \ 1 . |
\ B * g
d \ \
st 4% g 47 1
- T L ey L) L ey L . I . . L ,
W R R BTN R e e b g R IR e s NN ORIy O R R K \\ e \t . B e o g RS R
(i5) gee.expr (16) gec.expr2 (i7) gee.g23 (18) gcc s04 (19) gee.scilab
T T T T T T — o T — T
gobmk.13x13 gobmk.nngs ‘gobmk score2 gobmk,lre\'nrc gobmk.trevord
ot]
4 sk 4ok]
4E b 4E b E
17 4 1% \]
b P L L L L Nyl Lo
PO E T s st e s v o e e, ;s T o PR e e v
(j1) gobmk.13x13 (j2) gobmk.nngs (j5) gobmk.trevord
— — — T T ———— T
‘gromacs.gromacs h264refref_bascline 1 hmmer.nph3
L Fs | |
4 4 |
48 of & f \ E
\ IN |
\] N i \
1S s | 4
\
T 1 B I\
L e L - _J S . T TN —— L
RS 5 gy K @ LI N N R O IS
(k) gromacs.gromacs (1) h264ref ref baselme (ml) hmmer.nph3
— T — ——— — ——— ——— T — ——— —— ———— T
hmmer.retro \]bm Ihm . Icshc3d,lcshc3d hbqnanmm,rcf . mef.ref
\ \
sk Bl \ sl \ B ol \ 4
1 . E \
4 \\ - e N
N - -\: w0 B
ol]
2 w0} -
s E
i+ R st R
KON K E RS e IR R O R SR SR 3 \\ * Te S g KON . - R
(m2) hmmer retro (n) Ibm.Ibm (0) leslie3d.leslie3d (p) llbquanrum ref (q) mcf ref

Figure 5: SPEC CPU2006 Cache Sensitivity: The figure shows the cache performance of each workload as a function of cache size. The y-axis presents
workload MPKI and the x-axis presents the cache size in megabytes (MB). All workloads were run to completion using the reference input sets.

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

—
mile.su3imp 1 namd.namd omnetpp.omnetpp

T T T T T T T T T VT T T T T T T T T T T T
perlbench.checkspam perlbench.diffimail

Data Stream

Z oo i \ f 13
Instr Stream L | 1 I3 (RN
s . 1 \ i 1 .
Cache Size (MB) AN ”ﬁ
L \ L L L4 et - \ \ J _A__J \ TR L TR -
T aE Foar EIRCUR T ! e =

e e e e s —
(r) mllc su31mp (s) namd.namd (t) omnetpp omnetpp (ul) perlbench.checkspam (u2) perlbench dlffmall
T T — T — T — T — T
perlbench. \phlmml ' povray.ref \ sjeng.ref \ soplex.pds-50 soplex.ref
25k B \ aof
i _

5 \‘\” 4 sk B
. \\j\m T . TR A S

R b e L L 11
PR

L

* (u3) peribench.splitmail. ~ ~ 7 TG poviayrer T 77T T (w) siengref 0T (xl)soplex pds-50 T T o) soplexref T T T
T T T e T T T T T T T T T T L MR i AR S e rers
\ \
1 \\ 7 T 2 2
- \
‘ : j § .]
N 134] \ IN PROGRESS
: | F : \ i
Wt 1=l , : i
S g o ‘T_JA_‘_JH o T L TR S
R CES R RORZRG R R N N O S S SR) RORROSOID Eprroaeasce I
() specrand.rand "(2) sphinx3.and ((x) tonto.tonto ([}) witrsl (x) xalancbmk ref

L e L s S s s S B
zeusmp.zeusmp

\
\.

e
© O e

Mises er 1000 Istusions

(b) Leusmp Leusmp

Figure 6: SPEC CPU2006 Cache Sensitivity: The figure shows the cache performance of each workload as a function of cache size. The y-axis presents
workload MPKI and the x-axis presents the cache size in megabytes (MB). All workloads were run to completion using the reference input sets.

| | ® @ ISTREAM SPEC CPU2000 (all)
20~ . || @ @ DSTREAM SPEC CPU2000 (all)
L S /| ® @ DSTREAM SPEC CPU2000 (no art, mcf)
. A A ISTREAM SPEC CPU2006 (all)
s B || A A DSTREAM SPEC CPU2006 (all)
g | | DSTREAM SPEC CPU2006 (no mef)
E »
=3 \\
g 1o A .
g
s s 7
I 7777*:’:3% |
0 e
| | | | | | | | | | | | | |
NG LN NN N R U R P Y

Cache Size (MB)

Figure 7: Average SPEC CPU2000 and SPEC CPU2006 Cache Sensitivity: The figure presents the average cache behavior of the SPEC CPU2000 and
SPEC CPU2006 suites. Since SPEC CPU2000 is heavily biased by art and mcf, we also present the average behavior of the workloads excluding art and mcf.
Similarly, for SPEC CPU2006 we present the average behavior excluding mcf.

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

100KB. However, for workloads such as applu (Figure 2a),
gap (Figure 21), and others where misses occur even in a
128MB cache, one can conclude that the total data memory
footprint size of these workloads is greater than or equal to
128MB. From the figures, 20% of the 48 SPEC CPU2000
workloads have total memory footprint greater than 128MB
while more than 75% of the 56 SPEC CPU2000 workloads
have total memory footprint greater than 128MB.

The instruction cache sensitivity study reveals that an
instruction cache that is 64KB suffices for most workloads in
the two suites. However, there are some outlier workloads
such as crafty, gap, gcc, eon, perl and vortex from SPEC
CPU2000 and gcc, gobmk, omnetpp, perl, and xalancbmk
from SPEC CPU2006 which require a 128KB instruction
cache to perform as well as other workloads in the suite. These
workloads have code footprints that are greater than 1MB.
This is to be expected from workloads such as compilers
(gce), interpreters (perl), XML parsers (xalancbmk) and
artificial intelligence programs (gobmk and sjeng) which
spend their time over a wide range of functions.

The data cache sensitivity study reveals that most of the
workloads exhibit cache friendly behavior—incremental
increases in cache size yields incremental improvements in
cache performance. Such behavior is observed when the cache
miss rate shows a smooth exponentially decreasing behavior
with increasing cache sizes (example Figure 2¢). However,
both suites also comprise of workloads where incrementally
increasing the cache size provides no improvements in cache
performance until a particular cache size is reached. At this
cache size suddenly significant improvement in cache
performance is observed. Such behavior is evident through
sudden drops (cliff shaped figures) in the cache miss rate as a
function of cache size. Some examples are art (Figure 2d) and
equake (Figure 2h) from SPEC CPU2000 and /ibquantum
(Figure 5p) and sphinx (Figure 6z) from SPEC CPU2006.
This behavior implies that the respective workloads have a
working set that is of the same cache size as where the
significant drops in cache miss rate occur. For example,
libquantum from the SPEC CPU2006 suite has the best cache
performance with a 32MB cache. Since the total number of
misses drops down to zero with a 32MB cache, this implies
that the workload re-references a 32MB working set in a
circular fashion. Some workloads like gcc in both SPEC
CPU2000 and SPEC CPU2006 illustrate multiple drops in the
cache miss rate function implying that they have multiple
working set sizes.

Figure 7 presents the average cache behavior of both the
instruction and data stream. Since the average behavior of
SPEC CPU2000 is heavily biased by art and mcf, we also
present the average of all workloads excluding art and mcf.
Comparatively, for SPEC CPU2006 we also present the
average of all workloads excluding mcf. The figure shows that
both SPEC CPU2000 and SPEC CPU2006 have similar
instruction cache requirements, with 64KB being optimal. On

the other hand, the knee of the data stream cache miss rate
function for SPEC CPU2000 occurs at a cache size of 1-2 MB,
while that of SPEC CPU2006 occurs at a cache size of 16-32
MB—a factor of 16 higher. The larger cache requirements of
these workloads continues to put pressure on improving the
performance of the memory subsystem.

3.4.2.Sensitivity to Different Input Sets

For the SPEC CPU2006 workloads, the benchmarks with
multiple input sets are: astar (2 input sets), bzip2 (6 input
sets), gamess (3 input sets), gcc (9 input sets), gobmk (5 input
sets), h264ref (3 input sets), hmmer (2 input sets), perlbench
(3 input sets), and soplex (2 input sets). We compare the
different input sets using MPKI as the metric of comparison.
Input sets that have the highest MPKI are considered more
memory intensive than others.

For the astar benchmark, the BigLakes2048 input is more
data memory intensive of the two. For the bzip2 benchmark,
the different input sets have very similar instruction and data
cache requirements with the /iberty input set being more data
memory intensive than the others. For the gamess benchmark,
all input sets have very similar working sets and fit well into a
512KB cache (the triazolium input set is slightly more data
memory intensive for a 256KB cache). For the gcc
benchmark, the /66 and g23 input sets are more data memory
intensive than the others. For the gobmk and h264ref
benchmarks, all input sets have very similar working set sizes.
For the himmer benchmark, the retro input set is more data
memory intensive of the two. For the perlbench benchmark,
the splitmail input set is more data memory intensive. Finally,
for the soplex benchmark, the pds-50 input set is more data
memory intensive when the cache size is less than 4MB while
the ref input set is more data memory intensive when the
cache size is greater than 4MB.

3.4.3.Performance of a Three-Level Cache Hierarchy

Figure 8 presents the cache performance of the workloads
for a three-level cache hierarchy: 32KB separate instruction
and data caches, 256K B unified L2 cache and 2MB unified L3
cache. For each cache we present four metrics: accesses per
1000 instructions, misses per 1000 instructions, miss rate, and
evictions unused.

The evictions unused metric is a measure of the total
number of cache lines evicted that were never re-referenced
after they were inserted into the cache. There are three main
reasons for unused cache evictions. First, the referenced data
has no temporal locality. This behavior is characteristic of
references to streaming data. Second, the data has short
temporal locality that is handled by smaller caches. In such
scenarios, the filtering effect of the small caches causes the
data to never be re-referenced in successive levels of the cache
hierarchy. Finally, unused evictions also occur when the
referenced data has a working set that is larger than the

DAV

o
rkonod
Treungdsouaqpuad
ey ipyouaqpiad
wedsysagoousgiad
dduto ddiouuo

ansedoasias
INavyauaq

pouIioo ¢
uoRy-Cd

SOAUR] SoAEA

QAL ITISE

SHOTSOPYBIE ST

o

arjjom)
. Jorums

[oexs
pueioy ﬂu.

Joraasaony
Jorayenba
EuysIIT0s
eAifyuos
§003u05
Jorfyesn
omoszdizq
weisoid 7dizq

Jordue

T IBERsRsn T
DAV
duwsnoz dussnoz
JariquR[EX
iy
ooy
yds
puerpueioads
xaydos
xojdos
Buafs
Jrkuned
s youaqy
"youdqpiad
tredsyoauDyousquad
ddoutioddauuio
puieupurey
dungnsoj
o
) Jarunyuenbay
(4
s By
UL SSSJIpOTY
= e Jorjoipozy
a auIfaseq JorjaIpoTY
[72]
[
0
0
0
0
0
0 pau izq
0 wpoy 7dizg
0 SIABAGSIARMG.
0 SA RIS
0 SPOTSHE I Eise
100 JOraLaLen
) Swemno g g s
g8 SLEA& g 8 8
= = 8 S =1
o DAV
0 Jorasydnm
0
0
w0
90
68°0
0
0 £ Jorunms
100 Joryoenxis
€ 10apad-yuqpad
0 ioyewywiqpad
01 .
LZo LS6wiqpiad
1o 058w
o pOLuiqpad
i =
Jarasn
(4 o
(=4 o
S 0 v
N 0
= 0
A o
0
O :
0
C 690
8€0
= 650
P 670
670
2] wo
0
810
0
0 (POL —
; TopunsI U0
100 100 eifeyuod
0 0 §002u0>
660 ml wo Jarkyen
0 0 Samos zdizq
0 0 weiBord 7dizq
0 0 owdvsszdizg
o 0 €0 yarue
o 0 T 1jarye
0 0 s Jorisde
0 0 o Jarndde
0 0 vst o Jordue
L L L I Lo L b
25353 © © <+ oo Sugowo s cgogsoosog so g
gg8g SLa4 8 ZE2S82°EZE 2° 8
R =1 5 484 s4a
suononnsup suononnsug f— suononzysup suononaIsu Je— pasnup suononnsuy suononnsuy Je— pasnup suononsysuy suononnsuy — _ posnun
0001/5358200y 0001/53SSIA i SuonAIAT % 0001/5355200Y 0001/538SIN i SUONOIAT % 0001/5955200y 0001/538SIN i SUOROIAT % 0001/5358200y 0001/59SSIN : SUONAIAT %

oyde) uononnsu [T gANCE

ayde) el [T 9cE

ayor) 7T PAYIUN E9ST

Ayde) ¢1 payrun gINC

The figure shows the cache performance of the different SPEC CPU2000 and SPEC CPU2006

hy Performance:

Three Level Cache Hierarc
workloads for a three level non-inclusive cache hierarchy

Figure 8

10

Please cite:

Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

1 100 wm
8o bzip2.liberty 80 [A T]
g ; 2 .)
S eor. S 60 =~ %
g 0L % aof =]]
= wks g : et 1
[—) ¥ F
0 50 100 150 200 250 0 100 200 300
100
g0 f
2
s o e
g 40r gee.c-typec
s b | - +
. W . ;
0

1500 2000 2500

Instruction Count (billions)

Cumulative

50

Instruction Count (billions)

10 million Instruction Phase

Figure 9: Full Run L3 Cache Behavior of Applications: The figure shows the full run L3 cache miss-rate behavior of workloads from SPEC CPU2006. The
solid line presents cumulative behavior while the dots represent application behavior the on a 10 million instruction granularity.

available cache size. As a result, cache lines get evicted due to
capacity misses before they ever get a chance to be reused.

The cache performance numbers presented in Figure 8
draws similar conclusions on the instruction and data cache
performance as discussed in Section 3.4.1. The key
observations in these figures is the unused evictions metric.
The figures show that on average, roughly 15%, 20%, 80%,
and 75% of the lines evicted from the IL1, DL1, UL2, and
UL3 caches are never re-referenced after insertion into the
cache. This presents a tremendous wastage of cache resources,
especially in the large caches. Every line that is not re-
referenced before eviction is wasted cache space that could
potentially have been used by a more useful cache line. For
applications with frequent cache misses, this suggests an
opportunity to improve cache performance by effectively
utilizing the cache resources.

3.5. Full Run Behavior of Applications

Figure 9 presents the time varying L3 cache performance of
selected benchmarks from the SPEC CPU2006 suite. The x-
axis presents the total number of instructions executed (in
billions) and the y-axis presents the L3 cache miss rate. For
each benchmark we present the cumulative L3 cache miss rate
of the application (as represented by the solid line) and the
instantaneous behavior of the application on a 10 million
instruction interval (as represented by the dots).

The figure shows that applications have several different
phases of execution. For example, bzip2 has a step function
with the L3 cache miss rate increasing over time; mcf has
several phases of execution where none, some, or all cache
references result in misses; tonto presents loop behavior with
the cache performance significantly varying within each loop;
finally gcc illustrates the L3 cache performance significantly
varying during its full execution run.

The phase behavior of these applications show that it is
extremely important that representative regions chosen for
detailed simulation accurately reflect actual program behavior.
For example, choosing a 100 million instruction interval
starting at 525 billion instructions for tonto would be

11

misleading for performance studies since the L3 cache
performance in this phase inaccurately reflects the overall L3
cache performance of the application.

Choosing representative regions of long running programs
for detailed execution becomes a challenging task as newer
applications continue to emerge. Since IDS allows for quick
full-run exploratory studies of applications, it serves as an
excellent methodology to not only identify representative
regions of a program but also to validate existing region
selection algorithms [12].

4. Summary

There is a growing need for simulation methodologies to
understand the memory system requirements of emerging
workloads in a reasonable amount of time. This paper presents
binary instrumentation-driven simulation (IDS) as an
alternative to conventional execution-driven and trace-driven
simulation methodologies. Since instrumentation driven
simulation is fast, robust, and simple, users can characterize
applications at MIPS speed. As a result, rather than studying
only small regions of an application, users can now study
applications run to completion.

We illustrate the benefits of IDS using Pin to characterize
the SPEC CPU2000 and SPEC CPU2006 benchmark suites.
In comparison to SPEC CPU2000, workloads in SPEC
CPU2006 have an instruction count that is an order of
magnitude larger than the SPEC CPU2000 workloads.
Specifically, the average instruction count of SPEC CPU2000
was 131 billion while that of SPEC CPU2006 is 1.3 trillion.
The large instruction counts of SPEC CPU2006 now present
interesting challenges in choosing representative regions for
detailed simulation. A full memory characterization study of
both SPEC CPU2000 and SPEC CPU2006 reveal that SPEC
CPU2006 workloads have larger memory working-set sizes
with most memory-intensive workloads requiring more than
4MB of cache size. The larger cache requirements of these
workloads continues to put pressure on improving the
performance of the memory subsystem.

Please cite: Web Copy: http.//http://www.glue.umd.edu/~ajaleel/workload/

References

SPEC CPU2006: http://www.spec.org/cpu2006/Docs/
readmelst.html

P. Bungale and C. K. Luk “PinOS”.

J. Edler and M. D. Hill. “Dinero IV Trace-Driven Uniprocessor
Cache Simulator”.

J. L. Henning. “SPEC CPU2006 Benchmark Descriptions.” In
ACM SIGARCH newsletter, Computer Architecture News,
Volume 34, No. 4, September 2006.

A. Jaleel, R. S. Cohn, C. K. Luk, B. L. Jacob. “CMP$im: Using
PIN to Characterize Memory Behavior of Emerging Workloads
on CMPs”, Technical Report - UMD-SCA-2006-01

K. Lawton. Bochs. http://bochs.sourceforge.net.

C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. “Pin: Building
Customized Program Analysis Tools with Dynamic
Instrumentation.” In Proceedings of Programming Language
Design and Implementation (PLDI), Chicago, Illinois, 2005.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, and
G. Hallberg. Simics: A full system simulation platform. IEEE
Computer, 35(2):50-58, Feb. 2002.

12

[9] R.L.Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger.
“Evaluation techniques in storage hierarchies.” IBM Journal of
Research and Development, 9, 1970

[10] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder.
“Automatic logging of operating system effects to guide
application-level architecture simulation.” In SIGMETRICS,
Saint Malo, France, 2006.

[11] H. Pan, K. Asanovic, R. Cohn, and C. K. Luk. “Controlling
Program Execution through Binary Instrumentation.” In
Workshop on Binary Instrumentation and Applications (WBIA),
St. Louis, MO, September 2005.

[12] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and
B. Calder. “Using SimPoint for Accurate and Efficient
Simulation”. In SIGMETRICS, San Diego, CA, 2003.

[13] S. Sair and M. Charney. “Memory Behavior of the SPEC
CPU2000 Benchmark Suite.” IBM Thomas J. Watson Research
Center Technical Report RC-21852, October 2000.

[14] Srivastava and A. Eustace. “ATOM: A System for Building
Customized Program Analysis Tools”, Programming Language
Design and Implementation (PLDI), 1994, pp. 196-205.

[15] R. A. Uhlig. and T. N. Mudge. “Trace-driven Memory
Simulation: A Survey”, In ACM Computing Surveys, Vol. 29,
1997.

	Abstract
	Memory Characterization of Workloads Using Instrumentation-Driven Simulation
	1. Introduction
	2. Instrumentation-Driven Simulation (IDS)
	2.1. Caveats with Instrumentation-Driven Simulation

	3. Memory Behavior of SPEC CPU2000 and SPEC CPU2006
	Figure 1: Dynamic Instruction Count and Instruction Profile of SPEC CPU2000 and SPEC CPU2006 workloads
	3.1. Experimental Methodology
	3.2. Application Instruction Profile
	Figure 2: SPEC CPU2000 Cache Sensitivity:

	3.3. Processor Performance
	Figure 3: SPEC CPU2000 Cache Sensitivity:

	3.4. Cache Performance
	Figure 5: SPEC CPU2006 Cache Sensitivity:
	Figure 6: SPEC CPU2006 Cache Sensitivity:

	3.4.1. Working Set Size
	3.4.2. Sensitivity to Different Input Sets
	3.4.3. Performance of a Three-Level Cache Hierarchy
	3.5. Full Run Behavior of Applications
	Figure 9: Full Run L3 Cache Behavior of Applications:

	4. Summary
	5. References
	[1] SPEC CPU2006: http://www.spec.org/cpu2006/Docs/ readme1st.html
	[2] P. Bungale and C. K. Luk “PinOS”.
	[3] J. Edler and M. D. Hill. “Dinero IV Trace-Driven Uniprocessor Cache Simulator”.
	[4] J. L. Henning. “SPEC CPU2006 Benchmark Descriptions.” In ACM SIGARCH newsletter, Computer Architecture News, Volume 34, No. 4, September 2006.
	[5] A. Jaleel, R. S. Cohn, C. K. Luk, B. L. Jacob. “CMP$im: Using PIN to Characterize Memory Behavior of Emerging Workloads on CMPs”, Technical Report - UMD-SCA-2006-01
	[6] K. Lawton. Bochs. http://bochs.sourceforge.net.
	[7] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. “Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation.” In Proceedings of Programming Language Design and Imp...
	[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, and G. Hallberg. Simics: A full system simulation platform. IEEE Computer, 35(2):50-58, Feb. 2002.
	[9] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. “Evaluation techniques in storage hierarchies.” IBM Journal of Research and Development, 9, 1970
	[10] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. “Automatic logging of operating system effects to guide application-level architecture simulation.” In SIGMETRICS, Saint Malo, France, 2006.
	[11] H. Pan, K. Asanovic, R. Cohn, and C. K. Luk. “Controlling Program Execution through Binary Instrumentation.” In Workshop on Binary Instrumentation and Applications (WBIA), St. Louis, MO, September 2005.
	[12] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B. Calder. “Using SimPoint for Accurate and Efficient Simulation”. In SIGMETRICS, San Diego, CA, 2003.
	[13] S. Sair and M. Charney. “Memory Behavior of the SPEC CPU2000 Benchmark Suite.” IBM Thomas J. Watson Research Center Technical Report RC-21852, October 2000.
	[14] Srivastava and A. Eustace. “ATOM: A System for Building Customized Program Analysis Tools”, Programming Language Design and Implementation (PLDI), 1994, pp. 196-205.
	[15] R. A. Uhlig. and T. N. Mudge. “Trace-driven Memory Simulation: A Survey”, In ACM Computing Surveys, Vol. 29, 1997.
	Figure 8: Three Level Cache Hierarchy Performance:

