
ABSTRACT

The use of large instruction windows coupled with aggressive out-of-order and prefetching capabilities

has provided significant improvements in processor performance. We quantify the effects of increased

out-of-order aggressiveness on a processor’s memory ordering/consistency model as well as an applica-

tion’s cache behavior. A preliminary study reveals that increasing reorder buffer sizes cause less than one

third of total memory instructions issued to be executed in actual program order. Additionally, increasing

the reorder buffer size from 80 to 512 entries results in an increase in the frequency of memory traps by a

factor of 100-150 and an increase in total overhead of 20-60%. Even more, the reordering of memory

instructions increases the cache misses by 25-80% in the L1-cache and 50-200% in the L2-cache. 

These findings reveal that increased out-of-order capability can waste energy in two ways. First, re-

fetching and re-executing instructions flushed due to replay traps requires the fetch, map, and execution

units to dissipate energy on work that has already been done before. Second, an increase in the number of

cache accesses and cache misses needlessly dissipates energy. Both these side effects can be related to the

reordering of memory instructions. Thus, to avoid wasting both energy and performance, we propose a

mechanism called “windowing” to throttle the degree by which memory instructions are issued out-of-

order. By investigating various window sizes in traditional load/store queues, we propose to explore

dynamic and static mechanisms to reduce the negative effects of out-of-order execution of memory

instructions.
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1 INTRODUCTION

The instruction window is categorized as one of the most important design parameters in the design of

modern high performance processors. Many previous studies have shown that increasing the size of reorder

buffers, issue queues and load/store queues can lead to increased performance. Consequently, much

research has looked at the feasibility of increasing the size of these hardware data structures without

negatively impacting clock cycle time. However, when one considers “real” effects due to the reordering of

memory instructions, the potential performance gains largely disappear.

By varying the aggressiveness of an out-of-order core in terms of reorder buffer sizes, issue queues,

load/store queues, and renaming registers, we observe two potential pitfalls of aggressive out-of-order

mechanisms present in real systems that many previous simulation based studies have not addressed. First,

aggressive out-of-order execution conflicts with a processor’s memory consistency and ordering model by

requiring the processor to take frequent expensive replay traps, i.e. flushing the pipeline and re-executing a

window of instructions. Second, highly aggressive out-of-order mechanisms can destroy cache locality,

thereby causing an application to suffer from a higher number of cache misses than a lesser aggressive out-

of-order mechanism. Our preliminary study shows that even though aggressive out-of-order mechanisms

enhance performance, the reordering of memory instructions can cause significant overhead in the memory

system. Thus, we propose to investigate mechanisms required to control the degree by which future

aggressive out-of-order processors issue memory instructions out of program order.

1.1 Motivation

The designs of modern high performance microprocessor architectures rely on very aggressive

hardware mechanisms to maximize processor performance. Techniques such as branch prediction, data

speculation, load speculation, hardware and software prefetching, cache line prediction and pipeline
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scheduling speculation are a few of the numerous techniques utilized by modern high performance

microprocessors to tolerate the growing gap between the processor and DRAM system. The different

techniques mentioned strive towards one common goal—boost processor performance by continuing to do

possibly useful work rather than stay idle. 

To avoid staying idle, most ILP processors improve processor performance by executing instructions in

an order different from sequential program order. This is called instruction reordering and is also more

commonly known as out-of-order execution. The motivation for out-of-order execution is to overlap useful

work with work that takes a while to do. To be capable of executing instructions in an order different from

actual program order, instructions are fetched into an instruction window. Each cycle the processor’s out-of-

order hardware consults the instruction window for instructions that are ready to execute. If an instruction

has all of its dependencies resolved and is ready to execute, the out-of-order hardware issues it to the

appropriate functional unit. Thus, by overlapping useful work with work that takes a while to do, modern

microprocessors achieve a much higher performance with out-of-order execution than with in-order

execution. 

Processor performance, in general, is determined by the amount of time it takes to execute a given

program. Mathematically, processor performance is expressed by IPC x clock speed, where IPC is

Instructions Per Cycle, i.e. the average number of program instructions completed in a processor clock

cycle. From this equation, it is easy to realize that processor performance can be improved by either

increasing IPC, clock speed or both. These methods for increasing microprocessor performance belong to

two well known trends in the architecture community: brainiacs and speed demons. Brainiacs improve

processor performance by concentrating only on increasing IPC. They attempt to build smarter processors

that are capable of dynamically exploiting maximum application ILP. Using large instruction window and

queue sizes and complex issue logic schemes to execute several instructions at a time, the brainiac approach
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increases IPC while maintaining low clock speeds (e.g. IBM’s POWER2, MIPS R10000 and others as

shown in Figure 1). Speed demons, on the other hand, only concentrate on increasing clock speeds to

improve processor performance. Their design philosophy is to accommodate any amount of design

complexity as long as it does not compromise the primary goal of maintaining high clock speeds. With

continued decrease in feature size and improved microarchitectural techniques in microprocessor design,

speed demons have been able to continue to increase clock speeds and achieve high processor performance

by relying on smart compilers to expose an application’s inherent ILP (e.g. Pentium 4, UltraSPARC-III).

Exactly which path of design decision (brainiac or speed demon) is the “right” path for improving

microprocessor performance is a hot debate. From Figure 1, we observe that some microprocessor vendors

such as the DEC/Compaq and MIPS started off as speed demons (Alpha 21064, Alpha 21164, MIPS R2000,

MIPS R4000) and then changed their design philosophy to brainiac (Alpha 21264, MIPS R5000, MIPS

R8000, MIPS R1000, MIPS R12000). Sun on the other hand started off as a brainiac (SPARC,

Figure 1: Brainiacs Vs. Speed-Demons. 
4



microSPARC, superSPARC, hyperSPARC), however of late has changed to the speed demon design

philosophy (UltraSPARC-III). 

In general, it is desirable if the design philosophy of a microprocessor were both brainiac and speed

demon, however, the two design philosophies are often at odds against one another. This is because the

complex logic required to extract ILP in the brainiac approach cannot handle the high clock speeds desired

by the speed demons. One such example is the complex out-of-order issue logic, the core of an ILP

processor. It is a well known fact that a processor’s out-of-order efficiency (i.e. ILP extraction capability)

depends on the total number of instructions it views at any given time, i.e. the instruction window size. The

more instructions an out-of-order core views, the more opportunity a processor has to exploit an

applications inherent ILP [4, 17, 19, 22]. With the growing gap between the processor and DRAM system,

the need for larger instruction windows to exploit ILP has become extremely important to avoid processor

idle time. However, with increasing instruction window sizes, the instruction selection and issue logic,

synchronization logic, and required data paths become critical paths with latencies that cannot meet high

clock frequencies. Consequently, on going research has proposed several novel techniques to provide the

functionality of large instruction window sizes yet maintain high clock speeds [13, 17, 18]. 

1.2 The Problem

Though large instruction windows and aggressive instruction schedulers provide the processor with a

large number of instructions deep into an application’s instruction stream, selecting and issuing to execute

such distant independent instructions inherently causes an application’s instructions to be reordered. The

reordering of ALU instructions poses minimal effects on program execution; however, the reordering of

memory instructions can affect program execution in two distinct ways: 
5



• Increased Replay Traps: The reordering of memory instructions can create a variety of hazards that

can affect the correct execution of an application. For example, when using load speculation [20, 18], if

it is later determined that the speculated load utilizes the same effective address as an older but

unresolved store, then the load causes a fault, and the processor must replay the faulting load instruction.

This is known as a “replay trap”. A replay trap can either be handled by flushing the pipeline and

restarting execution at the faulting instruction or re-executing only the faulting instruction and all of it’s

direct and indirect dependent instructions. Even though the re-execute method is better than the pipeline

flush method, the complexity in logic required to determine and re-execute an entire dependence chain

of the replay trap causing instruction is relatively expensive and can become even more so with

increased instruction window sizes [20]. Thus, with the pipeline flush method of handling traps, if the

frequency of traps increases, significant performance and energy can be wasted in re-fetching and re-

executing instructions flushed.

• Increased Cache Misses: Executing memory instructions speculatively or in an order different from

actual program order can negatively impact an application’s cache locality. For example, a load

instruction issued out-of-order can evict data required by both older and future memory instructions that

are waiting to be issued. When the older or future memory instruction later executes and misses in the

data cache, energy is needlessly wasted in re-fetching and re-filling the recently evicted data cache line.

Even more, if the out-of-order issued load instruction is speculative, energy is unnecessarily dissipated

by accessing the data cache and evicting a data cache line in the event of a cache miss. Thus, with

increase in out-of-order capability, an increase in the frequency of conflict misses due to speculative or

non-speculative memory instructions can result in unnecessary thrashing of the data cache resulting in

wastage of energy.
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2 BACKGROUND

2.1 Reordering of Memory Instructions

By allowing a processor to exploit instruction level parallelism (ILP) via large instruction windows,

both ALU and memory instructions are executed out of program order. Since register renaming maintains

the dependencies of ALU instructions, out-of-order issue of ALU instructions poses no threat to functional

correctness. On the other hand, since memory dependencies are resolved only after issuing to execute, out-

of-order issue of memory instructions can pose threats to functional correctness especially if two out-of-

order issued memory instructions access the same memory location. In such a scenario, the processor may

be required to initiate a replay trap. A replay trap occurs when the processor must roll back the state to force

accesses to a particular memory location in order, or to handle different-sized accesses to the same memory

location. Figure 2 illustrates the different types of replay traps. Numbers in parenthesis signify the order

which instructions are issued to execute and numbers in italics signify actual program order.

• Load-Store Replay: A load-store replay trap occurs when a newer load is issued before all prior store

addresses are resolved. In the event that the processor detects a newer load executing out-of-order with

respect to an older store that it depends upon, a load-store trap is initiated. This is required so that the

newer load acquires data from the store rather than stale data from the cache. For example, in Figure

2. ST BYTE A (3)

3. LD BYTE A (2)

1. LD BYTE A (1)

4. LD BYTE B (4)

2. ST BYTE A (2)

3. LD HALF A (3)

1. LD BYTE A (1)

4. LD BYTE B (4) 2. ST BYTE A (2)

3. LD BYTE A (1)1. LD BYTE A (4)

4. LD BYTE B (3)

P2P1

(a) Load-Store Replay (b) Wrong Size Replay (c) Load-Load Replay

Figure 2: Classification of Replay Traps. The figure illustrates the different types of replay traps that can occur in both uniprocessor and
multiprocessor scenarios. In the examples, due to the replay trap, re-execution starts from the shaded instruction.

3. LD BYTE A (3)

2. ST BYTE A (2)1. +LD BYTE A (1)

4. LD BYTE B (4)

P2P1

(d) Load-Miss Load Replay

+Memory Instruction Misses In Data Cache
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2(a), if memory instruction number three (a load) executes before the store instruction (both of which

access the same memory location A), then the value loaded from the data cache will be incorrect.

Microprocessors that use load speculation must handle this replay trap to ensure functional correctness,

e.g. Alpha, POWER4. [1, 2, 24]

• Wrong Size Replay: A wrong-size replay trap occurs when the data for a newer load is partially in the

store queue and partially in the data cache. Figure 2(b) illustrates this via an example. The second load

instruction in the program requires reading a half word (two bytes) starting at memory location A,

however a prior store writes a byte to the same memory location. When the processor detects this, the

load must be re-executed after the older store instruction drains it’s data into the cache. Note that this

replay trap can occur even if memory instructions are issued in program order [1, 2, 24]. As a result, all

high performance microprocessors must be able to detect and overcome this hazard. 

• Load-Load Replay: A load-load replay trap is initiated when two loads to the same memory address

are issued out-of-order. In a uniprocessor environment this poses no problems, however in the case of a

multiprocessor environment, out-of-order issue of loads can cause subtle memory consistency

problems. For example, if two loads to the same address are issued out-of-order, and a different

processor changes the value between the execution of these two loads, then, the newer load instruction

may obtain the older value and the older load may obtain a newer value. Figure 2(c) illustrates this via

an example. This load-load ordering problem can either be handled in hardware or explicitly by

software programmer. In the software approach, if a relaxed memory consistency model is supported,

processors provide a memory barrier instruction that allows the programmer to enforce ordering among

memory instructions wherever needed. However, extensive use of memory barriers can negatively hurt

performance [19]. Thus, hardware support, via replay traps, is provided by some processors to guarantee

load-load ordering to the same address. (e.g., Alpha[1, 2], POWER4[24], and MIPS R10000[3])
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• Load-miss Load Replay: A load-miss load replay trap is initiated when two loads to the same memory

address are issued and the first load misses in the data cache and already has a miss information/status

holding register (MSHR) allocated to it (Figure 2(d)). An MSHR keeps track of an outstanding memory

request to a single cache line [14]. It is used to “merge” multiple requests to the same cache line by

keeping track of all destination registers waiting for data from memory. When the data arrives from

memory, the MSHR fills all the outstanding destination registers that were waiting for the same cache

line. Like the load-load replay trap, a subtle case of memory inconsistency can occur if there is an

intervening store from a different processor between two loads to the same memory address. In such a

scenario, the MSHR provides the second load instruction with stale data. Thus, to avoid this source of

memory inconsistency, the processor replay traps until the data for the first load is loaded into the

destination register. Note that this replay trap occurs even though memory instructions are issued in

program order. (e.g., Alpha[1, 2]). 

• Cache Line Conflicts: With out-of-order execution there can be a number of memory instructions in 

progress at the same time. A cache line conflict occurs when two outstanding misses to different 

physical addresses request the same cache line/set. When the processor detects a cache miss for an older 

memory instruction and detects that an MSHR is already allocated for the same cacheline, a replay trap 

is generated for the newly issued memory instruction [1, 2].

Irrespective of the type of replay trap, the mechanisms currently used to handle a replay trap are

identical to those involved in handling branch mispredicts. When an instruction executes and causes a

replay trap, the fact is noted in the reorder buffer entry. While committing instructions, if the processor

detects a replay trap, the pipeline is flushed and execution is restarted at the faulting instruction. We show

that while these replay traps occur only a fraction of the time, increasing out-of-order capability exposes

them to be an overwhelming hazard to performance. 
9



2.2 Related Work

It is widely believed that a processor’s out-of-order efficiency depends on the number of instructions it

views at a given time, i.e. the reorder buffer/instruction window size. The more instructions an out-of-order

core views and the wider the issue widths, the more an out-of-order core can exploit an application’s

instruction level parallelism (ILP). Furthermore, more aggressive techniques such as load speculation and

data-value prediction allow the instruction scheduler to be less stricter, thereby exploiting more ILP. 

It is also known that larger instruction windows conflict with increasing clock speeds. A good deal of

recent effort is aimed at designing efficient and fast issue/selection logic that allows for larger instruction

window sizes while still maintaining high clock speeds. Henry et al. proposed an alternate binary tree circuit

implementation for the wakeup logic [13], Onder et al. proposed explicit wake-up lists associated with

executing instructions [17], Lebeck et al. tackle the instruction window size by proposing an alternate

waiting instruction buffer (WIB) [15], and Akkary et al. propose a checkpoint and recovery mechanism to

recover from branch mispredicts with larger instruction window sizes [4].

Since larger instruction windows expose aggressive out-of-order processors to more load/store

communications, Park et al propose techniques to scale the load/store queue size using segmentation [19].

Furthermore, to allow for load speculation, Calder et al. tackle the false memory aliasing problem and

propose four different mechanisms for load speculation. Loads predicted to not alias to older stores are

issued speculatively. If the load is mispredicted, instructions are squashed and re-executed [20]. 

Burger et. al. point out that when using aggressive latency tolerance techniques, memory bandwidth,

particularly pin bandwidth, and not raw access latencies prevents processors from gaining higher

performance. To quantify this they decomposed execution time into processing cycles, raw memory latency

stall cycles, and limited bandwidth stall cycles. Using this mechanism they were able to show that
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applications running on future aggressive processors will stall primarily due to memory-bandwidth

limitations [6].

3 EXPERIMENTAL METHODOLOGY

For the purpose of our study, we use a validated execution-driven Alpha 21264 simulator [9, 10]. The

simulator has a detailed memory system with two-way set associative L1 instruction and data caches, 4-way

set associative unified L2 cache, 8 MSHRs per cache, and 128-entry fully associate TLBs. The simulator

also models a detailed SDRAM memory and bus model[8]. The simulator also models two prefetching

schemes a) sequential prefetching without stream buffers and b) stride prefetching with a 256 entry 2-way

associative stride table and eight 8-entry stream buffers. With sequential prefetching, the processor requests

the next four cache-lines on a cache miss. The data gathered in this proposal considers only sequential

prefetching. Like the Alpha 21264 processor, the simulator allows for aggressive out-of-order techniques

such as load speculation; i.e., the processor issues load instructions even though prior store instructions

aren’t resolved. Additionally, like the Alpha 21264 processor, the simulator detects memory ordering

problems like those mentioned in Section 2.2 and handles them in the same way exceptions are handled—

the pipeline is flushed and instructions are re-fetched starting from the faulting memory instruction. Note

that these exceptions do not require handler support—they merely require re-execution of instructions

starting from the older memory instruction. Additionally, like the Alpha 21264 processor, the simulator

maintains a 1024-entry store-wait data structure to avoid recurring store-replay traps. If a load instruction

causes a store-replay trap, the fact is noted in the store-wait table. When issuing a load instruction and there

are prior unresolved stores, the processor issues a load only if the PC associated with it is not listed in the

store-wait table. The store-wait table is cleared unconditionally every 16,384 cycles [1, 2].
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For this baseline study, we vary the aggressiveness of the out-of-order core by changing the ROB size,

issue widths, issue queue and load-store queue size, number of functional units, and the number of renaming

registers as shown in Table 1. Additionally, we vary the data cache parameters as shown in Table 2 and

assume a perfect instruction cache. 

To measure the impact of out-of-order execution, we define three different issue logics: ALU-in/MEM-

in, ALU-out/MEM-in, and ALU-out/MEM-out as shown in Table 4. The cores for these three different

configurations differ in the issue logic otherwise are identical. In the ALU-in/MEM-in configuration, the

core issues instructions only when the instruction reaches the head of the reorder buffer (ROB). By

definition of a ROB this enforces in-order execution. The configuration does allow for speculative

execution but by definition mandates that both ALU and memory operations be issued in strict program

order. The ALU-out/MEM-in configuration allows the issue of ALU operations out-of-order but mandates

Table 1: Processor Parameters

Configuration 
Name

ROB 
Size

Issue Width
INT/FP

IssueQ Size
INT/FP

# Functional 
Units** LQ/SQ 

Size

 Renaming 
Registers
INT/FP

Alpha 21264 x 1 80 2/1 — 8/4 Way 20/15 4/4/1/1 32/32 41/41

Alpha 21264 x 2 128 4/2 — 8/4 Way 40/30 8/8/2/2 64/64 82/82

Alpha 21264 x 4 256 4/2 — 8/4 Way 80/60 16/16/4/4 128/128 164/164

Alpha 21264 x 8 512 4/2 — 8/4 Way 160/120 32/32/8/8 256/256 328/328

**INT ALU/INT MULT/FP ALU/FP MULT

Table 2:  Cache Configurations

 L1 Size L1 Latency L1 Line Size L2 Size L2 Latency L2 Line Size

16 KB 3 32 Bytes 512 KB 8 64 Bytes

64 KB 3 64 Bytes 2 MB 15 64 Bytes

Table 3: Benchmarks

SPEC
SUITE

art gcc mcf parser perlbmk

swim twolf vortex vpr

Olden em3d health mst treeadd

Table 4: Processor Instruction Issue Configurations

Configuration Name Configuration Description

ALU-in / MEM-in Instructions are issued only when they reach the head of the reorder buffer (ROB).
Speculation is enabled. By definition of a ROB this enforces inorder issue.

ALU-out / MEM-in ALU and memory operations are issued out-of-order with speculation enabled.

ALU-out / MEM-out ALU operations are issued out-of-order. Memory operations are issued from the
issue queues in program order.
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issuing of memory instructions from the load and store queues in strict program order. Finally, the ALU-out/

MEM-out configuration allows the issue of both ALU and memory operations out-of-order (and represents

the working of actual hardware). 

We use a mixture of SPECINT & SPECFP 2000 [12], and Olden [7] benchmarks as shown in Table 3.

Each benchmark was allowed to warm up and perform its initialization routines before statistics and data

were gathered. For the Olden benchmarks, data was gathered via entry and exit points embedded into the

benchmarks and implemented in the simulator model. The benchmarks were compiled with the -O2

optimization flag. The SPEC benchmarks were acquired from the SimpleScalar developers [25] and were

warmed up by fast-forwarding the recommended number of instructions [21]. Data was gathered over the

next half billion instructions. The SPEC benchmarks operate on their reference input sets. The execute

commands for the Olden benchmarks are the following: bisort 250000; em3d 10000 5 100 1 5; health 5 500

5; mst 1024; perimeter 11; treeadd 20.

4 IMPACT OF INCREASED OUT-OF-ORDER AGGRESSIVENESS

4.1 Replay Traps

Figure 3 shows the number of instructions executed between traps (trap rate), and trap overhead, i.e. the

total amount of execution time wasted due to traps, for the 16KB and 64KB cache configurations averaged

across all 15 of our benchmarks. The per benchmark data is provided for reference at the end of this

proposal. The graphs first of all show that even though the ALU-in/MEM-in configuration issues memory

instructions in program order, the processor can still suffer from replay traps. This is because some replay

traps such as the wrong-size and load-miss load replay trap can occur even though memory instructions are

issued in program order. The figure also illustrates that as the CPU gets more aggressive (increasing issue

widths and reorder buffer sizes), it exposes traps as an important source of overhead. This is primarily due to
13



the current mechanisms of handling traps— flushing the pipeline and restarting from the faulting memory

instruction. Larger issue widths and reorder buffer sizes allow for a processor to exploit ILP by executing

instructions deep into an application’s instruction stream; the overheads of flushing and re-fetching an entire

window of instructions can become expensive due to the amount of work that needs to be redone. For

example, if a trap occurs on a system with a 512-entry reorder buffer, and if at the time of the trap the

reorder buffer is full, then it takes a minimum of 64 cycles on an 8-way and 128 cycles on a 4-way processor

to restore the state of the reorder buffer to what it was before the trap. Furthermore, this latency can be even
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Figure 3: Reorder Traps. (a) Trap Rate— Average Number of Instructions Executed Between Traps (b) Trap Overhead—Total Amount of
Execution Lost Due to Traps Trends show that increase in out-of-order aggressiveness by increasing issue widths and reorder buffer sizes
increases the trap rate and trap overhead. For an ALU-out/MEM-out core, the figure illustrates that trap overhead and trap rate can be reduced
by more than 50% if the core is forced to issue memory instructions in order.
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higher due to the functional unit and cache access latency. This implies that it is imperative that the

frequency of traps be low on systems with larger instruction windows. 

Contrary to the desire for less frequent traps, by moving from an in-order, ALU-in/MEM-in, core to a

more aggressive out-of-order core, ALU-out/MEM-out (white bars), we note a factor of 8-9 increase in trap

rate, causing an application to waste on average 15-30% of it’s execution time redoing work already done

before. We observe that by restricting the out-of-order core to issue memory instructions in-order and

executing ALU instructions out-of-order (ALU-out/MEM-in), the overhead of redoing work already done

before can be reduced by more than 50%. However, this comes at the penalty of not exploiting ILP among

memory instructions. This suggests the need for modern out-of-order processors to statically or dynamically

throttle the degree by which they issue memory instructions out-of-order rather than issuing memory

instructions all out-of-order or all in-order. If during a certain window of execution the processor notes

frequent reorder traps, it should have a mechanism to ease back and restrict the reordering of memory

instructions completely or partially. 

4.2 Cache Performance

To measure cache performance of an application we compute the non-speculative cache miss rate, i.e.

the number of non-speculative cache misses divided by the total number of memory instructions committed.

The number of non-speculative cache misses is tracked by adding two bits in the ROB entry that denote

whether the memory instruction hits or misses in the L1 and L2 caches respectively. When a memory

instruction accesses the data cache(s) these two bits are updated. At commit time a counter is incremented to

keep track of non-speculative L1 and L2 cache misses. The reason why we choose non-speculative misses

rather than both speculative and non-speculative misses is because it better characterizes the real stalls an

application faces for data required from memory.
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Figure 4 illustrates the 16KB and 64KB L1-cache non-speculative miss rate (the number of non-

speculative memory reference misses divided by the total number of memory references committed)

normalized to the ALU-in/MEM-in configuration. The normalized graphs are separated into those

applications whose cache miss rate benefitted from out-of-order execution and those whose cache miss rate

worsened from out-of-order execution. The graphs display the different out-of-order parameters on the x-

axis and the percent change in miss-rate with respect to the ALU-in/MEM-in configuration on the y-axis.

The percent change for the ALU-out/MEM-in configuration is represented by black bars and the ALU-out/

Figure 4: Non-Speculative L1 Cache Miss Rates. The figures shows the non-speculative L1 cache miss rates for the ALU-out/MEM-in
and ALU-out/MEM-out configurations normalized to the ALU-in/MEM-in configuration. The graphs show that out-of-order execution of both
memory and ALU operations can benefit an application’s cache performance by 7-22%. On the other hand, it can hurt cache performance
by up to 80%. We observe that restricting the memory operations to be issued inorder eliminates more than 50% of the non-speculative
misses.
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MEM-out by white bars. These graphs report the average increase/decrease in non-speculative miss rate

across all benchmarks differing by more than +/- 5%. The per-benchmark behavior is discussed in the

analysis and is provided as reference at the end of this proposal.

Clearly, depending on an application’s memory access pattern, some applications benefit from out-of-

order execution and some don’t. We find that applications such as bisort, em3d, twolf, and vpr have a

memory access pattern that benefits from out-of-order execution; we also observe that these benchmarks

tend to perform better with a less strict instruction scheduler, i.e. one that issues both ALU and memory

operations out-of-order. 

On the other hand, we find applications such as art, gcc, mcf, mst, swim, and treeadd hurting from the

out-of-order execution of memory instructions by on average up to 80% increase in miss rate, and some

individual benchmarks showing absolute miss rate increases up to 200%. Since larger data caches in general

have a higher hit-rate, they allow a processor to speculate much better than a smaller data cache. Executing

memory instructions down a speculative path has a higher probability of evicting data that is required or

would later be reused by non-speculative memory instructions if the cache is small. We also observe from

Figure 4 that for those benchmarks hurting from out-of-order execution, keeping the issue widths constant

and increasing the reorder buffer sizes tends to have little effect (2-3% reduction in performance) in the

16KB L1 cache, but by as much as 30% in the 64KB L1 cache for 4-way and 8-way issue-widths

respectively. For such benchmarks we also observe that restricting the memory operations to be issued in-

order reduces the non-speculative miss rate by 50-90%. This again emphasizes the negative impact of

increased out-of-order aggressiveness on cache performance and requires for a processor to be able to

dynamically scale the degree by which it issues memory instructions out-of-order.

Similarly, in Figure 5 we plot the normalized non-speculative 512KB and 2MB L2 cache miss rates for

benchmarks differing from the ALU-in/MEM-in configuration by more than +/-5%. Simulations revealed
17



only one benchmark, em3d, that benefited from out-of-order execution by up to 30%. On the other hand, the

average miss rates across 8 benchmarks reveal an increase in non-speculative miss rate by 50-175% in the

512KB cache and 60-120% in the 2MB L2 caches. On a per-benchmark basis we observe degradation in

non-speculative miss-rate of 5-20% for parser, vortex and perimeter, by as much as 90% for health and mcf,

and finally by 250, 200, and 600% for the benchmarks swim, gcc, and art respectively. In the case of the

2MB and 512KB L2 caches, we observe that restricting the processor to issue memory instructions in-order

reduces the miss rate by 50% or more. We also observe in the 512 KB L2 cache, except for the 512-entry

ROB sizes, the in-order issue of memory operations increases the miss rate by up to 20%. Since the

difference between ALU-in/MEM-in and ALU-out/MEM-in is a higher degree of speculation, this behavior

implies that speculative memory accesses tend to evict data required by non-speculative memory accesses.

Our different choice of benchmarks show a varying behavior as a result of out-of-order execution of

memory instructions. Depending on the memory access pattern of an application, out-of-order execution

can either benefit, hurt, or bring no change to cache performance. Of the 15 benchmarks we observe the

increase in non-speculative cache misses (on average as much as 190%) in both the L1 and L2 cache is a

factor 9 larger than the benefits (up to 20%) received by some benchmarks. The data reveals two important

Figure 5: Non-Speculative L2 Cache Miss Rates. The figures shows the non-speculative L2 cache miss rates for the ALU-out/MEM-in
and ALU-out/MEM-out configurations normalized to the ALU-in/MEM-in configuration. The graphs show that out-of-order execution of both
memory and ALU operations can hurt cache performance by up to 175%.
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findings. First, the out-of-order issue of memory instructions tends to increase non-speculative cache miss

rates. Second, even if the memory instructions are issued in order, speculative memory accesses tend to

increase non-speculative cache miss rates as well. We also observe that non-speculative cache miss rates can

be decreased by more than 50% if the core is restricted to issue only the memory operations in-order. These

findings again reinforce the need for a mechanism in out-of-order processors to dynamically reduce the

degree of speculative issue of memory operations when faced with frequent reorder traps as well as non-

speculative cache misses.

4.3 Performance (CPI)

Our simulations revealed that increasing the aggressiveness of the out-of-order core in general increased

the non-speculative cache misses and the number of replay traps. We know that such trends in normal cases

significantly hurt performance. The question however is, does the increase in out-of-order aggressiveness

overcome these hurdles to provide net performance improvements? Figure 6 illustrates the performance

graphs for the ALU-in/MEM-in, ALU-out/MEM-in, and ALU-out/MEM-out configurations for the two

different cache configurations. The graphs show benchmarks on the x-axis and cycles per instruction (CPI)

on the y-axis. The CPI is distributed into three parts: cycles where memory instructions couldn’t retire due

to memory latency (black bars), cycles where ALU and memory instructions couldn’t retire because they

hadn’t started or finished execution (grey bars), and overhead cycles. (white bars).

One would expect that with increased aggressiveness comes decreased CPI, however excluding the 2-

way issue system, the graphs show performance to be relatively flat. We observe that moving from an ALU-

in/MEM-in core to an ALU-out/MEM-in core improves performance by 33% or more. This performance

improvement is attained by overlapping useful work while waiting for memory operations to complete. This

is evident by the ALU wait portion of CPI reducing by 60% or more. Comparing the ALU-out/MEM-in
19



with the ALU-out/MEM-out core, a cursory glance of the performance graphs show no remarkable

speedups. The performance of the these two systems are within 2-10% (with the exception of art for the

64KB L1 cache). For the ALU-out/MEM-out configuration, we observe that issuing memory instructions

out-of-order reduced the portion of time waiting for memory instructions to retire (black bars), but at the

same time increased the overhead due to traps (white bars). We observe that, in general, whenever the

memory latency portion of CPI decreases, it results in the overhead portion of CPI increasing. This reveals

that the out-of-order execution of memory instructions and the memory ordering model conflict with each

Figure 6: 64KB/2MB L1/L2 Performance - CPI. The figure illustrates the CPI for the ALU-in/MEM-in, ALU-out/MEM-in, and ALU-out/MEM-
out configuration. The figure shows that increasing the aggressiveness of the out-of-order core provides minimal performance gain due to
increase in trap overhead. The figure shows that much of the wasted work in the ALU-out/MEM-out configuration can be eliminated by
restricting the memory instructions to be issued in-order (ALU-out/MEM-in). 
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other. Continued increase in aggressive out-of-order techniques expose non-speculative cache misses and

reordering traps as a bottleneck to increased performance. We conclude that a mechanism to dynamically

throttle the reordering of memory instructions is required to reap the potential benefits of out-of-order

execution.

5 MEASURING OUT-OF-ORDER AGGRESSIVENESS

The results in the previous section showed that moving from an ALU-out/MEM-out configuration to

ALU-out/MEM-in configuration reduces the trap frequency and cache misses. Since the change of pro-

cessor configuration involved merely controlling the order in which memory instructions are issued, we

now introduce a metric to measure the degree by which an instruction is issued out of program order.

5.1 Disorder—Measuring the Reordering of Memory Instructions

When executing instructions on an in-order processor, every instruction executes in strict program order.

With out-of-order execution however, instructions are executed in an order different from fetch/program

order. The degree by which an instruction is issued out-of-order we call disorder. Disorder can be classified

into two types: absolute or relative. For the purpose of our study, we will only be measuring the disorder of

memory instructions. To measure disorder, at the time of instruction decode, we assign each memory

instruction a sequential ID, i.e. first memory reference gets sequential ID one, the next gets sequential ID

two, and so on. (In the case of pipeline flushes, the sequential ID is restored to the last successfully retired

memory instruction ID + 1.) Disorder is computed ONLY after a memory instruction has all of its

dependences resolved and is about to be issued to the cache memory system. 
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5.1.1 Absolute Disorder

Absolute disorder is the degree by which a memory instruction is issued out-of-order with respect to

actual program order. Absolute disorder is computed by calculating the difference between the current

memory instruction and the memory instruction that should have been issued had the processor executed the

program in sequential order. Figure 7 illustrates an example on computing absolute disorder. The figure

shows in cycle 101 memory instructions 1 and 3 issued to the cache system. If the system were in-order,

then memory instructions 1 and 2 would have been issued instead. Thus, the absolute disorder of memory

instruction 1 is 0 (1-1) and the absolute disorder of memory instruction 3 is 1 (3-2). An absolute disorder

value of zero indicates that the memory instruction was issued on time, a value less than zero indicates that

the memory instruction was delayed, and a disorder value greater than zero indicates that the memory

instruction was issued earlier than it should have. 
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Figure 7: Absolute Disorder. The degree to which a memory instruction is issued out-of-order with respect to actual program order. The
disorder is computed by computing the difference between a memory instruction issued and the memory instruction that should have been
issued.
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It is important to point out here that out-of-order execution is not the only source of absolute disorder.

Modern microprocessors issue load and store instructions to the cache system out of program order. This is

because loads access the cache when they reach the memory stage of the pipeline while store instructions

access the data cache at commit time. Since load instructions merely read the contents of the data cache,

they can access the cache as soon as their effective address is available. A store on the other hand must wait

until commit time before writing to the data cache. This is to avoid speculative writes to the data cache.

Thus, for a particular program, if a store is immediately followed by a load, the newer load instruction will

access the data cache earlier than the store, hence causing disorder.

5.1.2 Relative Disorder

Relative disorder on the other hand is the degree by which a memory instruction is issued out-of-order

with respect to other memory instructions issued in the previous and current cycle. Absolute disorder

computed disorder from a “program order” perspective, however relative disorder compares how memory

instructions issue with respect to each other. Figure 8 provides an example on how to compute relative

disorder for memory instruction number 10. Memory instruction 10 is issued by the processor in cycle 126

along with memory instruction number 2. The last time the processor issued memory instructions was in

cycle 105, and the memory instructions issued then were 5, 7, and 8. To compute relative disorder, we first

compute the disorder between memory instruction 10 and memory instructions 2, 5, 7, and 8 respectively

(done by subtracting from 10 each of the other memory instruction IDs). This yields the disorder of memory

instruction 10 with every other memory instruction issued in the same and previous cycle. We define

relative disorder to be the minimum of all the computed disorders. Thus, the disorder of memory instruction

10 with 2, 5, 7, and 8 is 8, 5, 3, and 2 respectively. Therefore, the relative disorder for memory instruction 10

is the minimum of all computed disorders, i.e. 2.
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Relative disorder measures how a processor issues memory instructions compared to one another other,

i.e. if a processor issued memory instruction N in a given cycle, how far apart in the instruction stream are

other memory instructions that are issued in the current and following cycle. We chose the minimum value

of all computed disorders and not anything else (e.g. standard deviation, or average of all computed

disorders) because the value will capture any in-order issue trend. A relative disorder of plus or minus one

indicates that there exists one memory instruction in the same or previous cycle that immediately follows or

precedes the relevant memory instruction. Relative disorders other than plus or minus one indicate the

degree by which memory instructions are separated in the sequential instruction stream.

5.2 Disorder Results

5.2.1 Absolute Disorder

Absolute disorder, as mentioned earlier, is the degree by which a memory instruction is issued out of

program order. Figure 9 shows the absolute disorder for the application SWIM on different configurations

Figure 8: Relative Disorder. The degree by which an instruction is issued out-of-order as compared to other instructions issued in the same
and previous cycle. The disorder is computed by extracting the minimum difference between a memory instruction and other memory
instructions issued in the same and previous cycle.
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of the Alpha processor. The graphs are representative of the several other SPEC2000 applications. The x-

axis represents the disorder of a memory instruction, and the y-axis represents the percent of instructions

that exhibited that disorder. 

Figure 9 shows that out-of-order execution creates significant disorder with respect to actual program

order. We see that approximately 30% of the instructions are issued in actual program order on an Alpha

21264 with 4/2-way issue and an 80-entry reorder buffer. The remaining instructions either have a negative

disorder (issued late due to dependencies or missing in the data cache) or a positive disorder (issued early

because older memory instructions couldn’t be issued). It is likely that the wide variation in disorder is

mostly due to memory references missing in the data caches, the low disorders primarily due to misses in

the L1 cache (L2 hit latency 15 cycles), and the extreme disorders due to misses in the L2 cache, i.e. due to

memory latency. We see that increasing aggressiveness of the out-of-order core (increasing issue widths

Figure 9: Absolute Disorder (SWIM). The figure shows the absolute disorder for the application SWIM for increasing issue widths (left to right
horizontally) and increasing ROB sizes (top to down vertically). The x-axis represents the disorder, and the y-axis represents the percent of
instructions with the disorder. One obvious feature from the graph is that memory instructions are significantly reordered, and as out-of-order
aggressiveness increases fewer and fewer memory instructions are issued in program order. This re-ordering may have side affects in terms of
cache performance as well as memory re-ordering issues.
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going across and increasing ROB sizes going down) allows for increased speculation; thus we see the

number of memory instructions issued on time (absolute disorder of zero) decreasing. For a 32/16 way

processor with a 512-entry ROB, the number of memory instructions issued on time is about 3-4%. The

graph also shows that increasing window sizes correlate with increasing absolute disorder (10-25%), where

as increasing issue widths change absolute disorder by only a few percent (2-4%). This is because with

increasing issue widths and constant reorder buffer sizes, the window of instructions available to the

processor stays the same. If the processor isn’t able to issue from the window, then irrespective of the issue

width, instructions won’t be issued thus the reorder buffer eventually fills up. Increasing the window size

provides the processor for a wider choice of instructions to issue from, thus increasing the absolute disorder.

5.2.2 Relative Disorder

We now analyze an application’s relative disorder, i.e. the disorder with respect to other memory

operations issued in the same and previous cycle. In the earlier section, we observed high absolute

disorder— less than one third of all memory instructions issued are actually issued on time. Figure 10 shows

the relative disorder for SWIM and is representative of all other benchmarks. We observe that memory

instructions issued are usually in close proximity to each other, i.e. memory instructions are often scheduled

from the same basic block or section of code; thus yielding an average relative disorder that is low, i.e. less

than or equal to |5|. This implies that when executing instructions out-of-order, instructions that are close to

each other are more likely to be scheduled in close proximity to each other i.e. there seems to exist a “spatial

locality” with respect to issuing memory instructions. 

From the earlier section, absolute disorder was used to measure the degree by which a memory

instruction is issued out of program order. However, it can also be used to measure the degree of

speculation. The higher the magnitude of the absolute disorder, the more the processor is speculatively
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executing memory instructions. With increasing out-of-order aggressiveness, a processor speculatively

executes memory operations distant from older memory operations that missed in the L1 data cache. While

executing instructions in the distant, it is more likely that the processor would be able to execute other

memory operations in the same locality, thus contributing to lower relative disorder.

6 PROPOSED WORK

We now look at possible avenues to address the problems associated with increasing out-of-order

aggressiveness. Results from section 4.1 and 4.2 revealed a correlation between the reordering of mem-

ory instructions, replay traps and cache performance. With the absolute disorder metric in mind, we pro-

pose to throttle the degree by which memory instructions are issued out-of-order and reduce absolute

disorder via a windowing mechanism. With regards to cache performance alone, we propose to investi-

Figure 10: Relative Disorder (SWIM). The figure shows the relative disorder for the application SWIM for increasing issue widths (left to right
horizontally) and increasing ROB sizes (top to down vertically). We see that the bulk of the memory instructions issued to the memory system
have a relative disorder of zero signifying that instructions issued are usually in close proximity to each other, i.e. they are from within the same
basic block or section of the code.
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gate different caching strategies and determine any correlation between cache configuration, increased

out-of-order aggressiveness, and cache performance.

6.1 Windowing Memory Instructions

We observe that simply restricting memory instructions to be issued in program order reduces both the

negative effects of out-of-order execution. However, we also observe that issuing memory instructions in

program order hurts ILP among memory instructions. Thus, rather than issuing all memory instructions

in order, processors could utilize a mechanism to throttle the degree by which they issue memory instruc-

tions out-of-order. We propose to restrict the reordering of memory instructions based on a window of

instructions by using the network communication concept of windowing [23]. By using a sliding window

protocol, we can restrict the scheduler to issue only those memory instructions that lie within the current

window of memory instructions. The size of the sliding window can either be determined statically or

dynamically. Such a mechanism can reduce the disorder of memory instructions, hence possibly reduce

the negative effects of out-of-order execution of memory instructions.

Windowing is a commonly used technique for implementing flow control while transferring data over net-

works. With typical network communication, a sender normally sends out data packets and the receiver

acknowledges (acks) them. The window size determines the maximum number of data packets that can be

sent without waiting for an ack. Once an ack is received and it is for the oldest packet in the senders queue,

the window is extended by sliding the window down to accommodate sending newer packets.

We attempt to reduce the reordering of memory instructions by utilizing the aforementioned property of

windowing. The length of the window determines the amount of memory instructions available to the select

and issue logic. The window essentially acts as a virtual load/store queue (VLSQ). The virtual load/store

queue is maintained using two pointers in the existing load/store queue: virtual head and virtual tail; virtual

head always points to the oldest non-issued memory instruction and virtual tail is a pointer to the end of the
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virtual load/store queue. The difference between virtual head and virtual tail is Wsize, the size of the virtual

load/store queue. During instruction scheduling, the select and issue logic must ensure that only memory

instructions residing within the virtual load/store queue are selected to be issued. The virtual head and

virtual tail pointer is changed when the memory instruction at the virtual head is issued. 

Figure 11(a) illustrates a traditional load/store queue with head pointer at index 0 and the tail pointer at

index N. The shaded load/store queue entries indicate instructions that have already been issued. With a

traditional load/store queue, the issue logic can schedule any memory instruction (between 2 and N) whose

operands are ready. Figure 11(b) illustrates an example of windowing with Wsize = 4. The virtual head

pointer points to the first non-issued memory instruction, i.e. memory instruction 2. Using windowing, the

issue logic can schedule only memory instructions 2, 3, 4, or 5. If none of the instructions in the virtual load/

store queue have their operands ready, the issue logic will stall the issue of memory operations. Only when

memory instruction two is issued does the window slide down until it reaches a non-issued memory

instruction.

Figure 11: Windowing Memory Instructions: A mechanism to reduce the reordering of memory instructions. (a) The figure illustrates
the traditional implementation of a load-store queue. (b) Using windowing, only memory instructions that lie within the virtual head and virtual tail
pointers are issued to execute. Other memory instructions must wait till these lie within the virtual window before they can be issued to the
memory system.

LD/ST 1

LD/ST 2

LD/ST 4

.

LD/ST 5

LD/ST 0

LD/ST 3

LSQ Tail

LSQ Head

Virtual Head

Virtual Tail

.

LD/ST N-1

LD/ST N

LD/ST 1

LD/ST 2

LD/ST 4

.

LD/ST 5

LD/ST 0

LD/ST 3

.

LD/ST N-1

LD/ST N
LSQ Tail

LSQ Head

Virtual
Window
Size=Inf

Virtual
Window
Size=4

(a) Traditional Load/Store Queue (b) Windowing of Load/Store Queue

Issued
Instructions
29



The benefits of windowing would be two fold. First, windowing will reduce the reordering of memory

instructions by maintaining a small load/store queue to schedule instructions from without affecting

instruction fetch bandwidth and the execution of ALU instructions. By reducing the reordering of memory

instructions, i.e. disorder, windowing can reduce the number of replay traps and cache misses. We show in

Figure 12 a comparison of the absolute disorder of a processor with an infinite memory window and a

memory window size of 2. From the figure, we observe that windowing aids in the reduction of absolute

disorder. The second benefit of windowing is that it will reduce the total number of speculative memory

instructions issued to execute. The benefits of reducing speculative memory instructions are reduced

Figure 12: Windowing of Memory Instructions. The figure illustrates the effect of windowing on absolute disorder. 
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number of load/store queue searches for memory disambiguation and reduced number of cache accesses. A

reduction in the number of speculative memory instructions issued and a reduction in replay traps caused

due to the reordering of memory instructions can lead to significant amount of power and energy savings in

the data caches and fetch, map, and execution hardware.

However, as mentioned earlier, a downside associated with windowing is a reduction in memory ILP.

Applications that are heavily memory dependent can suffer from a degradation in performance due to the

late issue of memory instructions to the memory system. Such memory intensive applications may require a

larger virtual load/store queue than those applications that are compute intensive. Characterizing application

behavior with different window sizes statically can help determine an optimal virtual load/store queue size.

7 CONCLUSIONS

Large instruction windows coupled with out-of-order execution has been the widely proposed technique to

tolerate the long latencies associated with data cache misses and cross chip communication. From our

preliminary study we’ve observed two pitfalls of aggressive out-of-order mechanisms. First, increased out-

of-order capability conflicts with the memory ordering requirements of a processor resulting in frequent

replay traps to maintain correct state. Second, increasing out-of-order capability can destroy an application’s

cache locality by causing it to suffer from a higher number of cache misses than a lesser aggressive out-of-

order mechanism. We observe that both these side effects of out-of-order mechanism can cause significant

performance and energy loss and can be attributed to the reordering of memory instructions. 

Based on these observation, we believe that future aggressive microprocessors require mechanisms to

overcome both pitfalls. With respect to replay trap and cache performance, we propose a windowing

mechanism in the load/store queue to reduce the reordering of memory instructions. The window essentially

acts as a virtual load/store queue within the traditional load/store queue. Developing the windowing
31



mechanism requires us to investigate static or dynamic mechanisms to determine VLSQ sizes that can aid in

the reduction of replay traps and cache misses. With respect to cache performance alone, we propose to

investigate different caching strategies to reduce the number of cache misses with increased out-of-order

capability. Favorable solutions can aid in reducing the wastage of performance and energy and allow future

aggressive out-of-order processors to reap the true benefits of out-of-order execution.
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Figure 13: Trap Rate—Average Number of Instructions Between Traps. The figure illustrates the average number of instructions executed
between traps. The figures show that trap rate increases by a factor of 8-9 when moving from an inorder core (ALU-in/MEM-in) to out-of-order
core (ALU-out/MEM-out). Since trap rate is caused due to the reordering of memory instructions, we see that forcing the inorder issue of
memory instructions (ALU-out/MEM-in) increases the average number of instructions executed between traps.
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Figure 14: Trap Overhead—Total Amount of Execution Lost Due to Traps. The figure show as a percent the total execution time wasted
due to trap handling. Trends show that increase in out-of-order aggressiveness by increasing issue widths and reorder buffer sizes increases the
trap overhead. When compared to a purely out-of-order core, the figure illustrates that trap overhead can be reduced by more than 50% if the
core is forced to issue memory instructions in order.
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Figure 15: 16KB L1 Non-Speculative Cache Miss Rate. (above) The figure shows the non-speculative L1 cache miss rates as a percent
for the ALU-in/MEM-in configuration. (below) Using the inorder core as a base machine, the graphs show the ALU-out/MEM-in and ALU-out/
MEM-out non-speculative cache miss rates normalized to the ALU-in/MEM-in configuration. The graphs show that four applications benefit
from out-of-order execution by 10-50%, six of them hurt by 20-60%, and the remaining five have little or no difference. In scenarios where
out-of-order execution hurts cache performance, the ALU-out/MEM-in configuration in most cases helps reduce the non-speculative cache
misses by 50% or more.
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Figure 16: 64KB L1 Non-Speculative Cache Miss Rate. (above) The figure shows the non-speculative L1 cache miss rates as a percent
for the ALU-in/MEM-in configuration. (below) Using the inorder core as a base machine, the graphs show the ALU-out/MEM-in and ALU-out/
MEM-out non-speculative cache miss rates normalized to the ALU-in/MEM-in configuration. The graphs show that four applications benefit
from out-of-order execution by 10-50%, six of them hurt by 20-200%, and the remaining five have little or no difference. In scenarios where
out-of-order execution hurts cache performance, the ALU-out/MEM-in configuration in most cases helps reduce the non-speculative cache
misses by 50% or more.
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Figure 17: 512KB L2 Non-Speculative Cache Miss Rate. (above) The figure shows the non-speculative L2 cache miss rates as a
percent for the ALU-in/MEM-in configuration. (below) Using the inorder core as a base machine, the graphs show the ALU-out/MEM-in and
ALU-out/MEM-out non-speculative cache miss rates normalized to the ALU-in/MEM-in configuration. The graphs show that only em3d
benefits from out-of-order execution by 40-60%, eight of them hurt by 5-400%, and the remaining six have little or no difference. In scenarios
where out-of-order execution hurts cache performance, the ALU-out/MEM-in configuration in most cases helps reduce the non-speculative
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Figure 18: 2MB L2 Non-Speculative Cache Miss Rate. (above) The figure shows the non-speculative L2 cache miss rates as a percent for
the ALU-in/MEM-in configuration. (below) Using the inorder core as a base machine, the graphs show the ALU-out/MEM-in and ALU-out/
MEM-out non-speculative cache miss rates normalized to the ALU-in/MEM-in configuration. The graphs show that only out-of-order
execution hurts performance by 5-350% for six of the benchmarks, and the remaining nine have little or no difference. In scenarios where
out-of-order execution hurts cache performance, the ALU-out/MEM-in configuration in most cases helps reduce the non-speculative cache
misses by 50% or more.
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