
Abstract
When several applications are co-scheduled to run on a system with
multiple shared LLCs, there is opportunity to improve system
performance. This opportunity can be exploited by the hardware,
software, or a combination of both hardware and software. The
software, i.e., an operating system or hypervisor, can improve system
performance by co-scheduling jobs on LLCs to minimize shared
cache contention. The hardware can improve system throughput
through better replacement policies by allocating more cache
resources to applications that benefit from the cache and less to those
applications that do not. 

This study presents a detailed analysis on the interactions
between intelligent scheduling and smart cache replacement policies.
We find that smart cache replacement reduces the burden on software
to provide intelligent scheduling decisions. However, under smart
cache replacement, there is still room to improve performance from
better application co-scheduling. We find that co-scheduling
decisions are a function of the underlying LLC replacement policy.
We propose Cache Replacement and Utility-aware Scheduling
(CRUISE)—a hardware/software co-designed approach for shared
cache management. For 4-core and 8-core CMPs, we find that
CRUISE approaches the performance of an ideal job co-scheduling
policy under different LLC replacement policies.

Categories and Subject Descriptors D.4.1 [Process Management]:
Scheduling, B.3.2 [Design Styles]: Cache memories, C.1.4 [Parallel
architectures]: Distributed architectures

General Terms Algorithms, Measurement, Performance, Design.

Keywords Scheduling, Cache Replacement, Shared Cache

1. Introduction
Emerging technologies such as virtualization, multi-core, and multi-
socket systems have enabled the consolidation of multiple
applications onto a single system. In doing so, a wide variety of
applications with differing memory demands can concurrently
execute and compete for shared resources in the system. Since
modern multi-core and multi-socket CMP systems typically contain
one or more shared last-level caches (LLC), system performance is
typically determined by how well the shared LLC is managed. 

Traditionally, there have been two approaches to manage shared
LLCs: intelligent software scheduling [37, 38, 31, 32, 7, 15, 17, 18,
21] and smart hardware cache replacement [4, 12, 10, 11, 14, 25, 34,
36]. Software scheduling puts the onus of co-scheduling applications
on a layer between the hardware and the applications themselves, like
the operating system or a hypervisor. The advantage of software
scheduling is that the underlying hardware is agnostic to the
scheduling of applications and can be designed independently.
However, the drawback is that the scheduler is unaware of the
runtime memory requirements of the applications scheduled. To
address this problem, researchers have proposed using existing
hardware performance counters (or adding new counters) to guide
scheduling [31, 21, 38]. For example, a recent proposal measures per-
application miss-rate using performance counters and then co-
schedules applications based on the degree of memory intensity [38].
However, this approach can cause sub-optimal co-scheduling
decisions since per-application miss-rate while sharing a cache can be
significantly different from the miss-rate while running in isolation.
Nonetheless, hardware performance counter based scheduling
algorithms, to some degree, have addressed shared cache contention. 

Researchers from the hardware community, on the other hand,
have addressed heterogeneity in memory demand by proposing to
build resource sharing decisions directly into the cache replacement
policy. Such smart replacement policies dynamically allocate more
cache resources to applications that benefit from the cache and less
cache resources to applications that do not benefit from the cache.
While cache replacement does not specify which applications can be
co-scheduled to share a cache resource, it can change the impact that
these applications have on shared cache usage. Consequently, we
believe that it is important to study the interaction between the
software and hardware approaches to shared cache management. 

This paper presents the first comprehensive study on the
interactions between intelligent software scheduling and smart cache
replacement. In general, we find that smart cache replacement
policies minimize the burden on software to provide intelligent
scheduling decisions. However, they do not eliminate the need for
intelligent scheduling decisions. Based on our observations, we
propose a hardware/software co-designed approach for shared cache
management called Cache Replacement and Utility-aware
Scheduling (CRUISE). We also propose a novel hardware
mechanism, Runtime Isolated Cache Estimator (RICE), which
provides a low overhead mechanism to dynamically estimate the
isolated cache performance of an application while still sharing the
cache with other applications. RICE requires no changes to the
existing shared cache structure and merely requires two counters per
application. The software component of our proposal uses cache
utility information provided by RICE and the knowledge of the
underlying LLC replacement policy to intelligently co-schedule
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applications. Our evaluations on 4-core and 8-core CMPs with two
and four threads sharing an LLC show that CRUISE consistently
provides near-optimal co-scheduling decisions. 

2. Motivation
Recent studies have shown that the commonly used LRU
replacement policy (and its approximations) perform poorly on
shared caches [12, 34, 10, 30, 29, 25]. This is because LRU
replacement allocates cache resources based on demand instead of
cache utility [30, 25, 12]. To improve shared cache performance,
researchers from the computer architecture community propose smart
replacement policies to improve upon LRU [12, 34, 10, 30, 29, 25].
On the other hand, other researchers have proposed intelligent co-
scheduling policies [37, 38, 32, 31, 21] that an operating system or
hypervisor can use to minimize shared cache contention.

Figure 2 illustrates a 4-core CMP with two shared LLCs. When
four applications (A, B, C, and D) concurrently execute on this CMP,
there are three possible application schedules: AB|CD, AC|BD, and
AD|BC. Depending on the amount of shared cache contention, the
three application schedules may observe different system and per-
application performance. For a given performance metric (e.g.,
throughput, weighted speedup), we refer to the application schedule
that yields the best system performance as Optimal Application
Schedule (OAS) and the application schedule that yields the lowest
system performance as Worst Application Schedule (WAS). 

In our 4-core CMP system, application performance and system
performance is largely dependent on the degree of cache contention
between the two applications co-scheduled (i.e. share) on the same
LLC. To avoid the worst application schedule, conventional wisdom
prevents co-scheduling a CPU bound application with a memory
bound application. However, such practice is only necessary for an
LRU managed LLC. In an LLC managed by smart cache
replacement, co-scheduling a CPU bound application with a memory
bound application no longer hurts the performance of a CPU bound
application. This is because smart cache replacement policies allocate
cache resources based on utility instead of demand. Since the
majority of existing intelligent scheduling studies have been
evaluated in the presence of an inefficient LLC replacement policy
(i.e., LRU), the question arises as to whether intelligent application
scheduling is necessary in the presence of smart cache replacement. 

In efforts to understand the interaction between cache
replacement and application scheduling, Figure 2 illustrates the
effects of optimal scheduling in the presence and absence of smart
cache replacement. The study is based on 1365 4-core heterogeneous
SPEC CPU2006 application mixes simulated on our 4-core CMP
illustrated in Figure 1. We use DRRIP [10], a recently proposed low
overhead, high performing shared cache replacement policy.

In the figure, the x-axis represents the system performance ratio
OASLRU/WASLRU while the y-axis represents the system
performance ratio OASDRRIP/WASDRRIP. This ratio (illustrated as a
percent) represents the performance variability that intelligent

scheduling policies attempt to minimize. We use system throughput
as our performance metric. Each data point in the figure represents a
4-core workload mix. Some mixes are emphasized using large shapes
(circle, square, diamond, and triangle) to highlight representative
behavior. Circles are in “Region I”, squares are in “Region II”,
diamond in “Region III”, and finally triangle in “Region IV”. 

An interesting observation from the figure is the behavior of
workloads in Region II (emphasized by squares). Under LRU
replacement, these workloads have significant performance variation
(up to 28% on the x-axis). Hence, under LRU, these workloads
significantly benefit from intelligent scheduling decisions. However,
under a smarter replacement policy, like DRRIP, these workloads
have lesser performance variation (<4% on the y-axis).
Consequently, under DRRIP, there is little benefit from improving
scheduling decisions. Upon inspection, these workload mixes consist
of memory bound applications paired with CPU bound applications.
Smart cache replacement policies, such as DRRIP, are particularly
designed to address such workload mixes. 

In general, the figure shows that the majority of workload mixes
lie below the linear bisector. Such behavior suggests that smarter
cache replacement policies minimize the burden on software (i.e.
operating system or hypervisor) to provide intelligent co-scheduling
decisions. However, note that smarter replacement policies do not
eliminate the need for intelligent scheduling decisions. For example,
workloads in Region IV (emphasized by triangle) can have as much
as 20% performance variation under both LRU and DRRIP.
Furthermore, for workload mixes in region III, smart replacement
policies introduce up to 20% performance variation. Note that these
workload mixes had less than 4% performance variation under LRU
replacement. Upon inspection, these workload mixes consist of
several non-memory bound applications that benefit from more
intelligent co-scheduling decisions. 

For the workloads studied, we find that DRRIP alone improves
performance over LRU by roughly 4.8%. Intelligent scheduling by
itself in an LRU-managed cache improves performance by 4.4%. We
find there is up to 8.4% performance potential when intelligent
scheduling is employed in a DRRIP-managed cache. This shows that

Figure 1: 4-core CMP with Two Shared LLCs. 
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Figure 2: Behavior of Optimal Co-Scheduling in Presence and 
Absence of Intelligent Replacement. Some workload mixes are 
emphasized with different sized shapes and are analyzed more 
closely in the results section of this paper. 
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the underlying replacement policy and intelligent scheduling
combined can together improve performance significantly. The next
section proposes such an intelligent scheduling policy.

3. Cache Replacement and Utility-aware 
Scheduling (CRUISE) 

Determining a suitable application co-schedule requires runtime
knowledge on the cache requirements of an application in isolation
[31, 38]. The next section describes our run-time mechanism to
determine isolated cache utility of an application. Given the cache
utility information, we then present our Cache Replacement and
Utility-aware Scheduling (CRUISE) proposal that co-schedules
applications based on knowledge of the underlying LLC replacement
policy. Finally, we discuss how an operating system (or hypervisor)
can incorporate CRUISE to improve system performance.
3.1. Classifying Application Cache Utility
Recent work used colors [18] and animals [35] as analogies to
characterize the memory intensity of applications. Instead of using
analogies, we propose to classify applications based on their cache
performance on the available CMP cache hierarchy. We categorize
application cache utility into four different categories: 
• “Core Cache Fitting” (CCF) Applications: These applications

have a working set size that fits in the smaller levels of the cache
hierarchy. CCF applications have no benefit from the shared LLC.

• “LLC Thrashing” (LLCT) Applications: These applications have a
working set size that is greater than the available LLC. We
consider streaming applications as LLCT applications. Under
LRU, LLCT applications degrade performance of any application
that benefits from the shared LLC. 

• “LLC Fitting” (LLCF) Applications: These applications require
the majority of the available shared LLC capacity to perform well.
If these applications do not receive the bulk of the shared LLC,
like LLCT applications, their performance degrades significantly
due to cache thrashing. As such, LLCF applications perform best
when running in isolation or when sharing the LLC with CCF
applications. LLCF application performance degrades when co-
executed with any other application. 

• “LLC Friendly” (LLCFR) Applications: These applications
benefit from the available shared LLC and continue to do so as
they are given more cache resources. Unlike LLCF applications,
LLCFR application performance does not degrade significantly
when they do not receive the bulk of the shared LLC. LLCFR
application performance degrades only when co-executed with
LLCT or LLCF applications. 

Based on the above application classifications, intelligent scheduling
decisions can be developed to manage a system with multiple shared
LLCs. For example, since CCF applications do not require the shared
LLC, co-scheduling them with LLCF applications can significantly
improve LLCF application performance. Similarly, it is best to co-
schedule LLCFR applications with LLCFR applications. 

Before we provide a detailed description of our proposed
application co-scheduling policies, we first discuss mechanisms to
classify application cache utility. 
3.1.1 Profiling based Classification of Applications
Cache utility of an application can be determined statically using
profile information. Applications can be executed beforehand and
classified into one of the four categories described above. However,

the primary drawback of a profiling based approach is that the
information gathered is highly sensitive to the choice of input sets
(which is only available at run time), application phase, and also
varies across different types of applications. 
3.1.2 Runtime Classification of Applications
A straightforward way of classifying application cache utility in
isolation is to periodically pause all cores on a CMP and measure the
application cache performance. However, this approach degrades
performance of all other concurrently executing applications.
Alternatively, external shadow tags can be used to monitor cache
utility [25, 35]. However, such approaches require extra hardware
and power overhead for the shadow tags. To avoid additional
hardware overhead and changes to the existing shared cache
structure, we propose a Runtime Isolated Cache Estimator (RICE).
RICE estimates cache utility of an application by using a Set Dueling
Monitor (SDM) [24]. An SDM estimates the misses for any given
policy by permanently dedicating a few sets1 of the cache to follow
that policy. RICE dedicates two SDMs per application in the cache.
For each SDM, two 32-bit counters track the number of accesses and
misses to that SDM (illustrated in Figure 3). The first SDM, referred
to as Full-SDM (FSDM) estimates the caching behavior of an
application if it were to have sole access to the cache. The FSDM for
an application A (FSDMA) only allows A to allocate lines in these
cache sets. All other applications are required to bypass2 these cache
sets. The second SDM, referred to as Half-SDM (HSDM) estimates
the caching behavior of an application if it were to have sole access to
only half the cache. All other applications can share the remaining
ways in the HSDM. An HSDM can be implemented using way
partitioning [25]. For example, in HSDMA of a 4-way set associative
cache, application A only allocates lines in way 0 and way 1 while all
other applications allocate lines in way 2 and way 3. 

1. Prior work has shown that 32 sets are sufficient to estimate cache
performance [25, 24]. Throughout the paper an SDM consists of 32 sets. 

2. For an inclusive LLC, a single way in each set can be dedicated for all other
applications. This effectively causes the SDM to behave like a direct
mapped cache for all other applications. 

Figure 3: Runtime Isolated Cache Estimator (RICE) and 
Classification Algorithm. In the classification algorithm, to 
compute APKI, we multiply FSDMA_ACC by (total sets / SDM 
size). For this paper, we use α = 1, β = 4, ε = 25, γ = 50. 
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RICE can be enabled permanently or can be software controlled
through privileged instructions. Providing the dynamic on/off ability
reduces RICE overhead especially when the FSDM or HSDM tend to
be “hot” sets for other applications. The drawback however is that
privileged instructions must be introduced into the instruction set
architecture (ISA) to explicitly enable or disable RICE. 

When RICE is enabled, periodically sampling the RICE counters
and calculating the accesses per kilo instructions (APKI) and miss
rate (MR) metrics in each SDM can be used to classify the cache
utility of application A at runtime. For example, if the FSDMA

APKI
of the application is small (e.g. < 1), then the application is a CCF
application. On the other hand, if the FSDMA

APKI of the application
is high, the FSDMA

MR is small but the HSDMA
MR miss rate is high,

then the application is a LLCF application. However, if the
FSDMA

APKI of the application is high and the FSDMA
MR is also

very high, then the application is an LLCT application. If none of the
above conditions apply, then the application can be classified as a
LLCFR application. Note that the primary use of the HSDM is to
classify an LLCF application. Without the HSDM, an LLCF
application would incorrectly be classified as an LLCFR application.
Since LLCF applications behave like LLCT applications in the
presence of any other application, it is imperative that such
applications be classified correctly. A summary of our runtime
application classification algorithm is provided in Figure 3. 
3.2. Cache Replacement and Utility-aware Scheduling
Given statically profiled or dynamically gathered cache utility
information of all concurrently executing applications, we now
discuss the design of an intelligent scheduling algorithm that is co-
designed to the underlying shared LLC replacement policy. 
3.2.1 CRUISE for Demand-based Cache Replacement
LRU-managed shared caches allocate cache resources based on
demand instead of cache utility. As a result, under LRU replacement,
LLCT applications receive more cache resources despite the fact that
they do not benefit from the cache. Since LLCT applications can
degrade the performance of LLCF and LLCFR applications, it is best
to co-schedule them with LLCT or CCF applications. 

When scheduling CCF applications, it is best to separate these
applications across all available shared LLCs. Since CCF
applications require little LLC resources, such a strategy allows co-
scheduled applications to utilize more of the LLC. 

When scheduling LLCF applications, it is best to co-schedule
them with CCF applications. This is because an LLCF application
requires majority of the shared cache while a CCF application
requires little LLC resources. In the absence of CCF applications,
LLCF applications behave like LLCT applications and thus should
be scheduled in a similar fashion as LLCT applications. 

Finally, LLCFR applications perform well when co-scheduled
with other applications that benefit from the cache. Once LLCT,
CCF, and LLCF applications are scheduled onto the appropriate
LLCs, LLCFR applications can be co-scheduled anywhere. 

Since an LRU-managed shared LLC allocates cache resources on
demand, we propose CRUISE-LRU (CRUISE-L). To ensure a proper
schedule, steps must be followed in the order listed below: 

1. Group LLCT applications on the same LLC
2. Spread CCF applications across all LLCs
3. Co-schedule LLCF with CCF applications
4. Fill in the LLCFR applications 

During the scheduling process, if all computing resources on one
shared LLC are occupied, then the scheduling algorithm overflows
onto the next available LLC (selected at random). Additionally, if
there exists more than one application from the same category, then
the scheduling algorithm selects an application at random. 
3.2.2 CRUISE for Utility-based Cache Replacement
Unlike LRU, DRRIP-managed shared caches allocate cache
resources based on utility instead of demand. As a result, LLCT
applications receive very few cache resources when co-scheduled
with applications that benefit from the shared cache. Consequently, in
a DRRIP-managed cache, LLCT applications can be treated like CCF
applications that do not benefit from the available cache. 

When co-designing the scheduling policy for an LRU-managed
cache, an entire shared cache was used to “contain” LLCT
applications and prevent them from hurting LLCFR and LLCF
applications. In doing so, CRUISE-L is inefficient since it can
“waste” one or more shared caches. However, in a system with more
than one DRRIP-managed shared cache, we propose CRUISE-
DRRIP (CRUISE-D) to efficiently utilize all available shared caches.
Again, to ensure a proper schedule, steps must be followed in the
order listed below:

1. Spread LLCT applications across all LLCs
2. Spread CCF applications across all LLCs
3. Co-schedule LLCF with CCF/LLCT applications
4. Fill in the LLCFR applications 

Note that CRUISE-D is similar to the recently proposed Distributed
Intensity (DI) proposal [38]. Like DI, CRUISE-D separates LLCT
applications onto separate LLCs. However, CRUISE-D differs from
DI in that it explicitly detects LLCF applications and co-schedules
them intelligently to maximize system performance. 
3.2.3 CRUISE-L vs. CRUISE-D
CRUISE-L and CRUISE-D primary differ in how they co-schedule
LLCT applications. CRUISE-D treats LLCT applications like CCF
applications. This is because a DRRIP managed cache naturally
allocates fewer cache resources to LLCT applications since they do
not benefit from cache. 

Note that while CRUISE-L is co-designed for an LRU-managed
cache, CRUISE-L is applicable for any un-managed cache
replacement policy. Similarly, though CRUISE-D is co-designed for
a DRRIP-managed cache, CRUISE-D is applicable for any utility-
based cache replacement policy. Therefore, applying CRUISE-L to a
utility-managed cache or applying CRUISE-D to an un-managed
cache will yield suboptimal co-schedules. 
3.3. Integrating CRUISE into Existing Software
Existing software (i.e., operating systems or hypervisor) can utilize
CRUISE by using statically profiled utility information or by
dynamically learning the application utility if RICE hardware is
available. If an operating system implements CRUISE using
statically profiled cache utility information, then the natural
opportunity to determine the best application co-schedule is when the
operating system (or hypervisor) schedules a new application onto a
CPU (e.g., after a context switch). With statically profiled cache
utility information, co-scheduling decisions are limited to context
switches and/or when an application finishes execution. As a result,
the operating system (or hypervisor) cannot adapt to dynamic
application phases. 



Alternatively, if the underlying processor supports RICE, then an
operating system (or hypervisor) can dynamically adapt to
application phase behavior. To do so, the operating system can
periodically read and classify all applications using the RICE
counters. Upon classifying application cache utility, the operating
system (or hypervisor) can periodically apply CRUISE. 

4. Experimental Methodology
We use CMP$im [9], a Pin [19] based trace-driven x86 simulator for
our performance studies. Our baseline system is a 4-core CMP with
two shared LLCs (see Figure 1). Each core in the CMP is a 4-way
out-of-order processor with a 128-entry reorder buffer and a three
level cache hierarchy. We assume single-threaded cores with the L1
and L2 caches private to each core. The L1 instruction and data
caches are 4-way 32KB each while the L2 cache is unified 8-way
256KB. The L1 and L2 cache sizes are kept constant in our study. We
support two L1 read ports and one L1 write port on the data cache.
Each last-level cache (LLC) is a unified 16-way 4MB cache that is
shared by two cores in the CMP. We assume a banked LLC with as
many banks as there are cores in the system. All caches in the
hierarchy are non-inclusive and use a 64B line size. For replacement
decisions, the L1 and L2 caches always use the Not Recently Used3

(NRU) replacement policy. To evaluate interactions with intelligent
scheduling, we only vary the LLC replacement policy between NRU
and DRRIP [10]. We model a stream prefetcher that trains on L2
cache misses and prefetches lines into the L2 cache (i.e. the
prefetcher is private to each core). The prefetcher has 16 stream
detectors. The load-to-use latencies for the L1, L2, and LLC are 1,
10, and 24 cycles respectively. We model an interconnect with a fixed
average latency. Bandwidth onto the interconnect is modeled using a
fixed number of MSHRs. Contention for the MSHRs models the
increase in latency due to additional traffic introduced into the
system. We use a queuing model to model off chip contention. We
model a 150 cycle unloaded latency penalty to main memory and
support 16 outstanding misses to memory. The cache hierarchy
organization and latencies are based on the Intel Core i7 processor
[2]. Note that our proposed scheduling policies do not rely on the
specific latencies used. 

We do not use an operating system, but instead augment our
CMP$im model with an application scheduler. Applications are
initially assigned to the first available free CPU at the beginning of
simulation. Our dynamic scheduler periodically (every 1ms)
determines whether applications need to be re-scheduled. When
classifying an application at runtime, RICE uses hysteresis to ensure
steady state. This is to prevent CRUISE from doing frequent
reschedules due to slight phase changes in the application. When an
application is re-scheduled to a new CPU, we model all compulsory

misses to warm up all levels of the cache hierarchy on the new CPU
(and possibly new LLC). Additionally, when CRUISE attempts to
reschedule applications, CRUISE tries to minimize the number of
applications that need to be rescheduled. This is to minimize the
compulsory miss overhead for all applications. 
4.1. Benchmarks
For our study, we use benchmarks from the SPEC CPU2006 suite.
We first grouped the SPEC CPU2006 benchmarks into four different
categories based on their L1, L2, and LLC cache hit behavior. Of all
the SPEC CPU2006 benchmarks, we selected few applications from
each category to cover the spectrum of hit/miss behavior in the
different levels of the cache hierarchy. A total of 15 representative
SPEC CPU2006 benchmarks were selected. Each benchmark was
compiled using the icc compiler with full optimization flags.
Representative regions for the SPEC benchmarks were all collected
using PinPoints [23]. Table II lists the 15 SPEC CPU2006
benchmarks and their misses per 1000 instructions (MPKI) in the L1,
L2, and LLC when run in isolation. To illustrate application cache
utility, the MPKI numbers are reported in the absence of a prefetcher. 

To evaluate our proposed scheduling algorithms, we ran all
possible four-threaded combinations of the 15 SPEC CPU2006
benchmarks, i.e. 15 choose 4—1365 workloads. To provide insights
on when scheduling policies are beneficial, we selected 26 workload
mixes (listed in Table I) to showcase results. These 26 workload
mixes correspond to the same workload mixes emphasized with
different shapes in Regions I, II, III, and IV of Figure 2. Recall that
Region I workload mixes have no performance variation under
different application schedules. Region II workload mixes have
significant performance variation under LRU-managed shared
caches. These workload mixes mostly consist of LLCT applications.
Region III workload mixes have significant performance variation
under DRRIP-managed shared caches. These workload mixes mostly
consist of LLCFR applications. Finally Region IV workload mixes

3. NRU is the hardware approximation for LRU replacement. NRU performs
similar to LRU for a wide variety of workloads [10] and is the commonly
used LLC replacement policy in majority of microprocessors today [10]. 

Table I.      Workload Mixes and Their Types

Name Apps Type Name Apps  Type

MIX_00 mcf,pov,sje,wrf I MIX_13 bzi,cal,h26,mcf III

MIX_01 bzi,dea,per,xal I MIX_14 bzi,hmm,mcf,sph III

MIX_02 ast,bzi,gob,hmm I MIX_15 ast,cal,sph,wrf III

MIX_03 bzi,dea,gob,mcf II MIX_16 ast,cal,mcf,sph III

MIX_04 ast,h26,hmm,lib II MIX_17 cal,per,sph,xal IV

MIX_05 lib,sje,sph,wrf II MIX_18 ast,cal,dea,sph IV

MIX_06 gob,lib,mcf,sph II MIX_19 hmm,lib,mcf,wrf IV

MIX_07 lib,sph,wrf,xal II MIX_20 hmm,mcf,per,sph IV

MIX_08 lib,mcf,sph,xal II MIX_21 ast,lib,sph,gob IV

MIX_09 lib,mcf,pov,sph II MIX_22 ast,lib,sph,wrf IV

MIX_10 ast,cal,sph,xal III MIX_23 ast,lib,sph,mcf IV

MIX_11 cal,h26,mcf,sph III MIX_24 ast,lib,sph,per IV

MIX_12 bzi,h26,wrf,xal III MIX_25 ast,lib,sph,pov IV

Table II.      MPKI of Representative SPEC CPU2006 Applications In the Absence of Prefetching

ast bzi cal dea gob h26 hmm lib mcf per pov sje sph wrf xal

L1 MPKI (64KB) 29.29 19.48 21.19 0.95 10.56 11.26 4.67 38.83 21.51 0.42 15.08 0.99 19.03 16.50 27.80

L2 MPKI (256KB) 17.02 17.44 14.06 0.22 7.91 1.57 2.76 38.83 20.43 0.20 0.18 0.37 16.20 15.18 3.38

LLC MPKI (4MB) 2.02 1.05 0.51 0.05 7.70 0.03 0.80 34.28 18.72 0.60 0.01 0.30 1.21 8.23 1.72

Classification (4MB) LLCFR LLCFR LLCFR CCF LLCT LLCFR LLCFR LLCT LLCT CCF CCF CCF LLCF LLCT LLCFR



have performance variation under both replacement policies. These
workload mixes consist of both LLCT and LLCFR applications. To
provide a thorough analysis, we also provide results for all 1365
workloads wherever applicable. 

We simulated half billion instructions for each benchmark.
Simulations continue to execute until all benchmarks in the workload
mix execute at least half billion instructions. If a faster thread finishes
its required instructions, it continues to execute to compete for cache
resources. We only collect statistics for the half billion instructions
committed by each application. This methodology is similar to
existing work on shared cache management [25, 12, 34].
4.2. Metrics
For our studies we use the three metrics commonly used in literature
for measuring the performance of multiple concurrently executing
applications: throughput, weighted speedup, and fairness. The
weighted speedup metric indicates reduction in execution time [28].
The “harmonic mean fairness” metric (which is harmonic mean of
normalized IPCs) balances both fairness and performance [20]. The
different metrics are defined as follows:

Throughput = ΣIPCi (Eq. 1)

Weighted Speedup =Σ(IPCi/SingleIPCi) (Eq. 2)

Harmonic Mean Fairness = N/Σ(SingleIPCi/IPCi) (Eq. 3)

where IPCi is the IPC of the ith application when it concurrently
executes with other applications and SingleIPCi is IPC of the same
application in isolation. 

5. Results and Analysis
5.1. Throughput
To decouple the performance of CRUISE and the accuracy of our
application classifier RICE, we first illustrate CRUISE using cache
utility information from static profiling. In doing so, we can measure
the overall accuracy of the CRUISE algorithm that is specifically co-
designed to the replacement policy. RICE is just our low overhead
hardware classification mechanism. 

Figure 4 presents the relative throughput of five different
application scheduling policies (random, CRUISE-L, CRUISE-D,
Distributed Intensity (DI)4 [38], and Optimal Application Schedule
(OAS)) normalized to the Worst Application Schedule (WAS).
Random schedule refers to selecting a co-schedule at random from
the different possible co-schedules. The x-axis represents the
different workload mixes. The bar labeled geomean is the geometric
mean of all 26 workloads. In an LRU-managed LLC (Figure 4a), as
expected, workload mixes from category ‘I’ do not benefit from
scheduling since all applications in these workload mixes do not
benefit from the shared LLC. Workload mixes from category III also
do not benefit from scheduling because they mostly consist of
LLCFR applications. For such applications, LRU works best.
Workload mixes from categories II and IV benefit from intelligent
scheduling decisions because they consist of LLCT applications. In
these workloads, we find that CRUISE-L performs very similar to
OAS. In some scenarios CRUISE-L does not perform as well as OAS
(e.g. MIX_04, MIX_06, MIX_19). CRUISE-L reaches suboptimal
decision because these workload mixes consist of multiple
applications that belong to the same cache utility category (e.g.,

4. For DI, we use isolated cache miss rate based on profile information. 
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Figure 4: Throughput Comparison of Scheduling Policies to Worst Application Schedule (WAS) on a 4-core CMP. (a) LRU-managed 
LLC (b) DRRIP-managed LLC
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multiple LLCFR applications). When co-scheduling applications,
CRUISE randomly selects an application and does not distinguish
between applications that belong to the same cache utility category.
Though further enhancements can be made to CRUISE to make this
distinction, the first order benefits are from distinguishing
applications that belong to different cache utility categories. 

Additionally, the figure also shows that in an LRU-managed
cache, CRUISE-D is not as high performing as CRUISE-L (e.g.
MIX_05, MIX_07, MIX_20). Unlike CRUISE-L, CRUISE-D is
specifically designed for a utility managed cache and thus does not
perform well on a demand managed cache. 

The figure also shows that DI scheduling does not perform as
well as CRUISE-L (e.g. MIX_05, MIX_07, MIX_09). This is
because these workload mixes consist of an LLCF application, and
DI incorrectly co-schedules LLCF applications. For example,
consider MIX_05, the workload mix consists of applications
lib,sje,sph,wrf. Based on cache miss rates, DI co-schedules these
applications as lib,sje|sph,wrf. However, the OAS is sph,sje|lib,wrf.
This is because sph is an LLCF application that benefits from being
co-scheduled with sje, a CCF application. Furthermore, DI has
suboptimal performance under LRU because it co-schedules memory
bound applications with CPU bound applications. In doing so, DI
degrades CPU bound application performance. As a result, DI is
unable to arrive at the OAS. 

On average in an LRU-managed cache, DI performs similar to
random scheduling, both performing roughly 4% better than WAS.
CRUISE-D and CRUISE-L perform roughly 3% and 8% better than
WAS respectively. CRUISE-L bridges 90% of the gap between WAS
and OAS—OAS performs roughly 9% better than WAS. 

Figure 4b shows the performance of the different scheduling
policies on a DRRIP-managed cache. Recall that DRRIP allocates
cache resources based on utility instead of demand. We again observe
that workloads from category ‘I’ do not benefit from scheduling since
these mixes do not benefit from the shared LLC. Unlike an LRU-
managed cache, workload mixes in category II do not benefit from
scheduling because DRRIP inherently knows how to handle LLCT
applications in a workload mix. However, CRUISE-D finds
opportunity to improve workload mixes from categories III and IV
because they consist of multiple LLCFR and LLCT applications. In a
DRRIP-managed cache, we again observe CRUISE-D almost always
outperforms CRUISE-L. In a utility managed shared LLC, random,
DI, CRUISE-L, and CRUISE-D improve performance over WAS by
4.4%, 3.7%, 3.8%, and 7.5% respectively. Again, note that CRUISE-

D bridges 90% of the performance gap between WAS and OAS—
OAS performs roughly 8% better than WAS. 

To illustrate the behavior of CRUISE-L and CRUISE-D across a
much wider set of workload mixes, Figure 5 shows per-workload
performance comparison of each scheduling policy on an LRU-
managed and DRRIP-managed cache. The x-axis in the figures show
the 1365 workload mixes and the y-axis shows the performance
relative to OAS. Values at 1 imply that CRUISE application schedule
is identical to OAS, and values below 1 illustrate the relative
throughput difference between CRUISE and OAS. Each graph is
sorted in ascending order based on the CRUISE algorithm. Both
figures show that CRUISE significantly reduce the performance
variation between WAS and OAS. For workload mixes where the
performance variation is significantly high, CRUISE frequently
arrives at an optimal schedule. In both LRU-managed and DRRIP-
managed shared caches, the majority of performance variation is less
than 5%. For cases where the performance variation is greater than
5%, further refinement can be made by intelligently selecting
between applications that belong to the same cache utility category. 
5.2. Weighted Speedup and Fairness
Again, assuming statically profiled utility information, Figure 6 and
Figure 7 presents the throughput, weighted speedup, and fairness
comparison of CRUISE on both LRU-managed and DRRIP-
managed caches. Each figure shows the workloads on the x-axis and
the corresponding performance metric on the y-axis. Like Figure 5,
the throughput and weighted speedup metrics in these figures are
normalized to OAS. The throughput and weighted speedup figures
compare five different scheduling policies: WAS, random, CRUISE-
L, CRUISE-D, and DI. We present ‘s-curves’ independently sorted
for each scheduling algorithm. 

In an LRU-managed cache, across all 1365 workloads, for the
throughput and weighted speedup metrics, there is roughly 0.5%
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Figure 6: Throughput, Weighted Speedup, and Fairness of Scheduling Policies on a 4-core CMP for an LRU-managed LLC. Note that 
these curves are independently sorted for each scheduling policy. 
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performance variation for CRUISE-L, roughly 2.5% for CRUISE-D,
random, and DI scheduling, and finally roughly 4% for WAS.
Similarly, for a DRRIP-managed cache, we observe roughly 0.8%
performance variation for CRUISE-L, roughly 1.8% for CRUISE-D,
random, and DI scheduling, and finally roughly 3.5% for WAS. Also,
note that a randomly selected co-schedule tends to always be better
than the WAS. However, CRUISE-D and CRUISE-L always provide
better performance than a random schedule. Additionally, both
CRUISE-L and CRUISE-D are within 1% of OAS for the fairness
metric. In summary, Figure 6 and Figure 7 reveal that CRUISE
performs similar to OAS for the throughput, weighted speedup, and
fairness metrics—essentially CRUISE is robust across all metrics. 
5.3. Scalability
We now discuss scalability of CRUISE by varying the number of
shared LLCs and also varying the number of threads sharing an LLC.
We construct 8-core workload mixes and consider two 8-core
systems (a) four shared LLCs—two cores each sharing an LLC (b)
two shared LLCs—four cores each sharing an LLC. For both these
systems, we evaluate the performance of different scheduling policies
for LRU and DRRIP-managed caches. We evaluate all possible 8-
core combinations of the 15 applications—6435 workload mixes. For
each system, we also evaluate all possible co-schedules. For a four
LLC system with two cores per LLC, there are 105 possible co-
schedules while for a two LLC system with eight cores per LLC,
there are 35 possible co-schedules. Since we have already illustrated
that CRUISE performs well across all performance metrics, we now
limit ourselves to the throughput metric. We observe similar behavior
for both the weighted speedup and fairness metrics. 

Figure 8 illustrates CRUISE performance for the different 8-core
configurations. As the number of shared LLCs increase, CRUISE
consistently bridges the performance variation between OAS and
WAS (Figure 8 (a) and (b)). Similarly, when increasing the number of
threads per LLC, CRUISE still manages to bridge the performance
variation (Figure 8 (c) and (d)). In these larger systems, CRUISE
consistently performs better than all other scheduling policies.
5.4. Dynamic Classification
Thus far we have investigated the accuracy of CRUISE using
profiled utility information. We now evaluate CRUISE with
dynamically observed utility information gathered by RICE. Note
that any performance deviation from OAS can primarily be attributed
to the accuracy and sampling overhead of RICE. Figure 9 illustrates
CRUISE-L and DI performance compared to OAS for our baseline 4-
core CMP with two shared LLCs. We do not account for the RICE
overhead due to sampling for OAS. We observe that CRUISE-L
consistently tracks the performance of OAS, thereby showing that
RICE performs well in dynamically classifying the application. We
also observe that CRUISE-L consistently outperforms DI. On
average, we find that CRUISE-L, DI, and OAS improve performance
over WAS by roughly 2%, -0.2%, and 4% respectively. The
difference between CRUISE-L and OAS is roughly 2% due to the
sampling overheads of RICE (we observed similar comparison of
CRUISE-D to OAS in DRRIP-managed caches). Note that these
single digit performance gains are not insignificant since our studies
span more than 1000 workload mixes that include a significant
number of workloads that do not benefit from intelligent scheduling.

Figure 7: Throughput, Weighted Speedup, and Fairness of Scheduling Policies on a 4-core CMP for a DRRIP-managed LLC. . Note 
that these curves are independently sorted for each scheduling policy. 
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Both CRUISE-L and DI degrade performance slightly (less than
5%) compared to WAS. The negative outliers can be attributed to the
sampling overhead of RICE (for CRUISE-L) or the overhead of
compulsory misses from to context switches. Our investigations
revealed that for the duration of the runs, the application
classification reaches steady state and the number of context switches
are low. This indicates that there is opportunity to reduce the negative
overheads and improve CRUISE performance by periodically
sampling RICE counters. Investigating this is part of on-going work. 
5.5. Sensitivity to Cache Size
CRUISE performance is dependent on the accuracy of the per-
application cache utility. We evaluated CRUISE using profile based
cache utility information on our baseline CMP system with smaller
shared caches (2MB) and larger shared caches (8MB). With perfect
cache utility knowledge, we found that CRUISE behaves similar to
results illustrated in Figure 7 for all performance metrics. Similarly,
when using RICE to dynamically classify applications, CRUISE
behaves similar to results in Figure 9. 

With regards to RICE-based dynamic utility classification, we
found that classification of applications is a function of the available
LLC size. For example, RICE correctly classifies sphinx as a LLCF
application on a 4MB and an LLCT application on a 2MB cache.
This is because sphinx has a roughly 4MB working-set size.
Similarly, RICE correctly classifies h264ref as a LLCFR application
on a 4MB cache but a LLCF application on a 2MB cache. This is
because h264ref has a roughly 2MB working-set size. In general, as
expected, we observe transitions in application classification from
cache fitting/friendly to cache thrashing/fitting when the LLC size is
reduced. Similarly, we see transitions in application classification
from cache thrashing/fitting to cache fitting/friendly as the LLC size
is increased. This shows that RICE can dynamically classifying the
isolated application cache utility regardless of the available LLC size.

6. Related Work
Several researchers from the software and hardware community have
independently studied and proposed ways to mitigate contention in
shared caches. In this section we briefly describe recent work that is
relevant to our proposal. 

Perhaps the effort that closely resembles our work is the recent
Distributed Intensity (DI) proposal [38]. Unlike our simulation based
study, DI was evaluated on real hardware composed of Intel and

AMD systems with shared LLCs. To the best of our knowledge, these
LLCs use a pseudo-LRU replacement policy [10]. DI proposes to
capture runtime cache miss rates of applications (using hardware
performance counters), sort the miss rates, and then separate the
memory intensive applications onto different LLCs, in effect co-
scheduling memory intensive applications with non-memory bound
applications. For an LRU managed cache, this co-scheduling strategy
is at odds with all recent work on shared cache management [12, 25,
34, 8]. These studies have illustrated that in an LRU managed cache,
memory intensive applications significantly degrade the performance
of non-memory intensive applications. Perhaps the primary
difference is because the authors correlate performance degradation
to not only sharing the LLC but also from sharing prefetchers and the
DRAM memory controller. More recent Intel and AMD processors,
however, use a three-level hierarchy, where the prefetchers are
private and located at the L2 cache [2]. Furthermore, the DRAM
controller is on-die and more sophisticated than earlier designs [2].
Thus, the sharing effects of the prefetcher and DRAM controller is
less pronounced in modern day processors with LRU replacement.
As such, we show that DI does not perform well on LRU-managed
caches. Furthermore, while CRUISE-D is similar to DI, it
outperforms DI on DRRIP-managed caches as well. 

There has been considerable work in shared cache management
via software cache partitioning [6, 17, 36]. The general idea in these
designs is to allocate a portion of the cache to each of the applications
and modify physical memory allocation such that every application’s
cache lines map into its reserved cache space. These schemes have
non-trivial and intricate interactions with the operating system kernel
and require complicated changes to virtual memory management. 

Some software-centric scheduling algorithms attempt an ad-hoc
approach to choosing which threads should be co-scheduled by
attempting several thread allocation strategies and picking the best-
performing ones [28]. This period during which the algorithm is
sampling and learning can have sub-optimal system performance to
dynamic phase changes. Furthermore, such a scheme is impractical
for large number of threads since the number of permutations of co-
schedules exponentially increases.

Recent work in understanding the software co-scheduling of
threads has also shown that data sharing is an important parameter by
which to classify threads [32]. Tang et al. focus on datacenter
application workloads and use a heuristic based algorithm to predict
which threads should be mapped to which cores. Since our runtime
classification is based on miss rates it works in the same manner as a
heuristic based algorithm.

More recent efforts attempt to design an intelligent scheduler that
is aware of underlying caches and that can differentiate between
applications with differing memory demands [7, 37, 38]. These
proposals, however do not consider the impact that the underlying
hardware replacement and allocation policies may have on the
benefit of the scheduling decisions. Additionally, to differentiate
between and classify the applications, these mechanisms do not take
into account that hardware cache contention between the threads can
lead to misguided classifications.

In the hardware management of shared caches, some of the
earlier work focused on hardware cache partitioning [30, 25].
Hardware cache partitioning allocates cache resources to competing
applications either statically or dynamically. These proposals use way
partitioning in the cache and extra identifying bits per cache line to
reserve portions of the cache for each application. Such designs work
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well independently to manage caches at a hardware level but cannot
reach optimal performance since they do not guide the software
scheduler to make intelligent decisions in the first place.

More recent work in hardware management of caches has
focused on smart insertion and replacement policies. These policies
do not influence application co-schedules, but instead can mitigate
the impact that thrashing and scans have on the performance of
individual applications [12, 24]. 

The recent state-of-the-art work in smart hardware cache
management focuses on more fine-grained classification of each
application by differentiating between references that have near and
distant re-reference intervals [10]. The RRIP and DRRIP proposals
improve the performance of shared caches considerably and are good
starting points to consider a hardware-software co-design where a
smart cache replacement removes some of the inefficiencies of
shared caches such that intelligent software scheduling is able to
reach near optimal performance as we showed in this paper. 

There has also been some independent work done in classifying
the memory intensity of applications [5, 15, 35, 31]. These proposals
draw analogies to differentiate between the memory requirements of
several competing applications. However, the proposed mechanisms
are more complex than our RICE proposal. As we show in this paper,
RICE has negligible hardware overhead, and is practical design that
can obtain online and dynamic classification information of
concurrently executing applications.

7. Summary and Future Work
The use of virtualization, multi-core, and multi-socket systems have
enabled multiple concurrently executing applications on the same
system. In doing so, applications with varying memory demands
contend for shared resources. Since the on-chip shared LLC serves as
the last-line of defense before the long-latency penalty to memory, it
is crucial that shared LLCs be efficiently managed. 

Shared LLCs commonly found in microprocessors today use the
LRU replacement policy. Several studies have shown that LRU
performs poorly for shared LLCs because LRU allocates cache
resources based on demand instead of benefit. To address the LRU
problem, shared LLCs have been managed independently by the
software or the hardware. Software tries to intelligently co-schedule
applications to avoid shared cache contention while hardware tries to
reduce shared cache contention by improving the replacement policy.
However, to-date there exists no comprehensive study that evaluates
the interaction between improved cache replacement and intelligent
scheduling decisions. With this in mind, this paper makes the
following contributions:
• We conduct a detailed study on the interactions between intelligent

scheduling and smart cache replacement. We find that smart cache
replacement reduces the burden on software for intelligent
scheduling but does not completely eliminate the need for finding
optimal application co-schedules.

• We propose Cache Replacement and Utility-aware Scheduling
(CRUISE), a hardware/software co-designed application
scheduling policy that uses knowledge of the underlying LLC
replacement policy and application cache utility information to
determine how best to co-schedule applications. 

• Finally, we propose a Runtime Isolated Cache Estimator (RICE), a
hardware mechanism that dynamically determines isolated LLC
performance while concurrently sharing the LLC with other

applications. RICE requires no changes to the existing cache
structure and requires storage overhead of only eight bytes per
hardware-thread in the system. 

For a large number of heterogeneous workload mixes, we evaluate
CRUISE for a variety of systems with multiple shared LLCs. Our
evaluations included LLCs shared by two and four applications. We
show that CRUISE significantly reduces the performance variation
between different static application co-schedules. In the majority of
cases, CRUISE provides near-optimal performance for the
throughput, weighted speedup, and fairness metrics. 

In this paper, we evaluated CRUISE assuming as many cores as
there are running applications. However, CRUISE is also applicable
when the number of running applications is significantly larger than
the number of cores. In such a system, the operating system or
hypervisor can utilize CRUISE and RICE to dynamically select
applications from the waiting queue while guaranteeing some degree
of Quality of Service (QoS). Furthermore, we find that there is
opportunity to reduce RICE overhead by dynamically controlling
when to gather cache utility information. Exploring these extensions
is part of our on-going work. 
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