
                           

Abstract 
We have discovered that processors can experience 

a super-linear increase in detected unrecoverable errors 
(DUE) when the write-back L2 cache is doubled in size. 
This paper explains how an increase in the cache tag’s 
Architectural Vulnerability Factor or AVF caused such 
a super-linear increase in the DUE rate. AVF expresses 
the fraction of faults that become user-visible errors. 
Our hypothesis is that this increase in AVF is caused by 
a super-linear increase in “dirty” data residence times 
in the L2 cache.  

Using proton beam irradiation, we measured the 
DUE rates from the write-back cache tags and analyzed 
the data to show that our hypothesis holds. We utilized a 
combination of simulation and measurements to help 
develop and prove this hypothesis. Our investigation 
reveals two methods by which dirty line residency 
causes super-linear increases in the L2 cache tag’s 
AVF. One is a reduction in the miss rates as we move to 
the larger cache part, resulting in fewer evictions of 
data required for architecturally correct execution.  The 
second is the occurrence of strided cache access 
patterns, which cause a significant increase in the 
“dirty” residency times of cache lines without increas-
ing the cache miss rate.  

1. Introduction 
Soft errors continue to pose a challenge for micro-

processor designers.  These errors arise from bit flips 
caused by alpha particles from packaging material or 
atmospheric neutrons [19].  To meet the soft error rate 
(SER) requirement of a target market segment, design-
ers add an appropriate amount of error protection to a 
processor.  To gauge how these protection schemes can 
reduce a processor’s SER, practitioners have evolved a 
set of modeling and measurement methodologies.  A 
soft error can be modeled either as a silent data corrup-
tion (SDC) or a detected unrecoverable error (DUE) 
event [12]. An SDC event, as the name suggests, causes 
data corruption, whereas a DUE event usually leads to a 
system halt, but does not cause any data corruption.  The 
SDC error rate of a processor, given in Equation 1 
below, is the product of two independent components—

SDC AVF and Intrinsic Error Rate of the Circuit—
summed over all circuits that have no appropriate 
protection1, where AVF or Architectural Vulnerability 
Factor expresses the fraction of faults that results in 
user-visible errors.  Similarly, the DUE rate of a 
processor, given in Equation 2 [14], is the product of the 
DUE AVF and Intrinsic Error Rate of the Circuit 
summed over all circuits on the chip that are protected 
with an error detection scheme, such as parity.  . 

Unlike measuring performance or power, however, 
measuring a processor’s SDC or DUE rate is signifi-
cantly more challenging. Modern CPUs are known to 
exhibit Mean Time to Failures (MTTFs) of the order of 
hundreds of years [4]. In this study we use accelerated 
proton beam testing to accumulate a sufficient number 
of errors in a reasonable amount of testing time. Even 
with highly accelerated beam fluxes, numerous 
repetitions are necessary in product level radiation 
testing since DUE events by definition stop the normal 
operation of the system and force a reboot into a clean 
initial state [2].  A processor’s DUE is much easier to 
measure in this way since the processor typically will 
have a machine check logged when a DUE event 
happens.  But so far, SDC rates have proven very hard 
to measure correctly in a complex computing system.  

                                                           
1 Appropriate protection refers to error detection.  No error detection 

capabilities will result in SDC.  In some cases, error detection may 
be limited in which case SDC may still result in certain situations 
(triple bit error on a cache line protected by double-bit error 
detection). 

SDC SER =  
∑ (SDC AVF x Intrinsic Error Rate of the Circuit) 
all unprotected circuits 

Equation 1. SDC Equation 
 
DUE SER =  
∑ (DUE AVF x Intrinsic Error Rate of the Circuit) 
all protected, uncorrectable circuits 

Equation 2. DUE Equation 
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Measuring the AVF of a processor or processor 
structures has proven even more challenging than 
measuring a processor’s SDC & DUE rates.  This is 
because processors today have no support to inject 
random faults easily into arbitrary processor structures 
and observe their effect, which is needed to figure out 
what fraction of faults will become visible to a user, and 
hence, result in an error.  Li, et al. [9] proposed 
hardware changes to compute AVFs, but to the best of 
our knowledge, such mechanisms have not been 
implemented yet.  Measuring the AVF via neutron or 
alpha particle exposure has also proven difficult because 
the intrinsic SER of circuits vary widely across proces-
sor structures and devices. Sanda, et al. [18] attempted 
to compute the overall SDC AVF of the Power6™ 
processor using a combination of simulation and 
neutron beam experiments.  We discuss these and other 
previous works in more detail in section 7.   

This paper examines how to compute the relative 
DUE AVF of two multi-megabyte level-2 (L2) proces-
sor caches using a proton beam to explain an SER 
anomaly.  We discovered that processors can experience 
a super-linear increase in DUE and correctable ECC 
(error correcting codes) rate when the size of the L2 
cache is doubled.  The DUE is triggered by the tag 
parity. ECC corrections are triggered by the data ECC.  
Conventional wisdom would suggest that when the 
cache size is increased by 2x, we should only see a 2x 
increase in the SER since the per-bit AVF is expected to 
remain constant.  Instead, an error rate of 4x or more 
was observed in our experiments.   
During our investigation, we uncovered several facts:  
(1) The super-linear increase in DUE was not observed 

for all workloads when the cache size was doubled. 
(2) Workloads and sites can vary widely across 

instances in which this can occur 
(3) This phenomenon is independent of a particular 

processor type or pipeline  
(4) This was not due to a design or manufacturing 

difference.   
It was critical for us to explain this anomalous be-

havior, even though the absolute error rate in the larger 
cache was very small.  There are three reasons why we 
need an explanation.  First, the super-linear increase in 
DUE rate can be a cause of serious concern.  Second, 
the increase in ECC-corrected errors in the data cache is 
also a cause of concern because many use notification of 
ECC corrections as an indicator of early failures caused 
by flaky hardware.  In future, even if the parity on the 
tags is converted to ECC, we will still have the issue of 
increased ECC errors, so we would certainly need to 

explain why that happened. Third, we need to ascertain 
what design changes may be needed to fix this problem.   

Interestingly, we had observed super-linear increases 
in the SER from doubling the size of small write-back 
caches in our simulation models.  This occurred 
because, while the average AVF across workloads 
showed little sensitivity to size changes, individual 
application AVFs could vary widely.   The residency 
time of data that needs to be correct—also known as 
data that is ACE or required for Architecturally 
Correction Execution—went up significantly, thereby 
increasing the AVF.  This happened due to an increase 
in ACE residency times of “dirty”, or modified, cache 
lines caused by fewer early write-backs for the larger 
cache. 

Showing these effects for large multi-megabyte 
caches was nevertheless a difficult proposition because 
our industrial-strength detailed performance simulators 
could not simulate a workload long enough to see the 
impact of this AVF increase.  Cai et al. [4] did observe 
the same effect by performing cycle-by-cycle simulation 
of large multi-megabyte caches with an embedded ARM 
processor.  But Cai et al. did not explore in detail why 
the super-linear effect was observed.  In any case, even 
if we did simulate this effect, without actual measure-
ment we would not be able to conclude with high 
confidence that this was the root cause of the DUE 
increase.  

Fortunately, because of the nature of our specific 
problem, we were able to use a proton beam combined 
with simulation and measurements to establish the root 
cause of this super-linear SER increase.  It turned out 
that almost all the DUE for the processors in question 
arose from the parity-protected tags of the write-back L2 
cache.  This cache signaled a DUE event on any parity 
error on a “dirty” cache line, thus allowing us to focus 
primarily on the “dirty” cache line hypothesis by which 
the ACE residency increases.  Consequently, the 
processor DUE computed through a beam experiment 
would, in effect, be the DUE of the L2 cache itself. 
Thus, we have Equation 3 where FIT stands for Failures 
in Time (1 FIT = 1 failure in 1 billion hours). Conse-

L2 DUE AVF =  
L2 Tag DUE / (L2 Tag FIT/bit x Number of L2 Tag bits) = 
Processor DUE / (L2 Tag FIT/bit x Number of L2 Tag bits) 
Equation 3. Beam experiment DUE AVF 
equation for L2 Cache 
 

2x L2 DUE AVF / 1x L2 DUE AVF =  
(2x L2 Processor DUE / 1x L2 Processor DUE) / 2 
Equation 4. DUE AVF Ratio equation for 
2x:1x L2 cache sizes 



                           

quently, the DUE AVF of 2x L2 / DUE AVF of 1x L2 is 
given by Equation 4, where 2x L2 refers to the L2 cache 
with twice the size of the 1x L2 cache.  Dividing by 2 
accounts for the increased number of tag parity bits in 
the processor with the 2x larger L2 cache size.  

Our results with the benchmarks libquantum, art, 
and swim—all from the SPEC suite—confirmed our 
hypothesis.  First, using a standalone cache simulator 
based on PIN [10], we determined that libquantum and 
swim showed no change in miss rate, but art's miss rate 
decreased by 6x when the cache size increased from 1 
MB to 2 MB.  True to our hypothesis, we did not see 
any change in DUE rates for libquantum between a 
processor with a 1 MB L2 cache and one with a 2 MB 
L2 cache.  But, the DUE rate went up by 4.25x for art 
under the beam between the 1 MB L2 cache processor 
and the 2 MB one, establishing that the AVF indeed 
went up by 2.125x2.  Swim, however, posed an anomaly 
to our initial conjecture.  Although swim's cache miss 
rate did not change, the DUE rate increased by 3.87x.  
We determined that this is still due to the increase in 
residency of “dirty” data in the processor L2 cache.  
But, this increase happens in swim due to the strided L2 
cache access pattern causing dirty data to reside 
significantly longer in a 2x larger L2 cache. 

Our results have two critical implications.  First, we 
need to be careful about how we ascertain the SDC and 
DUE AVFs of a processor.  When we increase the size 
of a structure—either due to a design change or because 
we are designing a new processor—we cannot blindly 
assume that the AVF per bit remains constant.  Second, 
we have to worry about how to flush the L2 cache and 
other structures, so that we can reduce the “dirty” data 
residency time, thereby reducing the SDC or DUE rates, 
as the case may be.   

The remainder of this paper is organized as follows.  
Section 2 describes the steps, tools and methodologies 
we used during our investigation into the cause of the 
super-linear cache SER increase and details both our 
simulation and system measurement models and 
methodologies.  Section 3 explains how we used our 
models to develop a working hypothesis to explain how 
increases in AVF can occur when the cache size 
increases.  Section 4 describes the method by which we 
chose our benchmarks for system measurement in order 
to clearly prove or disprove our hypothesis.  Section 5 
details the actual system measurement experiments and 
their results.  Section 0 provides a detailed analysis of 
the measurement results and provides insight into how 
these results relate to our initial hypothesis.  Section 7 

                                                           
2 Note that the AVF goes up by 2.125 = 4.25 / 2.  The division by 2 is 

to account for the twice the number of bits in our 2x L2.  

provides an overview of related work in this area while 
section 8 provides a discussion on what can be done to 
reduce or eliminate super-linearly increased SER due to 
increased cache sizes.  Finally, section 9 provides our 
final thoughts and conclusions. 

2. Steps, Methodology, & Tools 
This section describes the steps, methodology, and 

tools with which we developed our hypothesis to 
explain the cache SER anomaly.  The steps we took are 
as follows.  

• We investigated and eliminated any possible source 
of super-linear SER increase other than a signifi-
cantly increased AVF.    

• We used our detailed performance simulator to 
demonstrate that significant AVF increases were 
possible when a structure’s size is doubled.  

• We selected two specific processors with the same 
core but with different cache configurations—one 
with 1 MB L2 and other with 2 MB L2—to be our 
target processors for proton beam testing.  We refer 
to these processors as Processor 1x and Processor 
2x to signify the differences in their L2 cache sizes.  

• We used our high-level non-timing cache simulator 
to identify benchmarks that exhibited the proper 
cache behavior profiles for our target multi-
megabyte cache sizes.   Specifically, these bench-
marks were art and swim from the SPEC 2000 suite 
and libquantum from the SPEC 2006 suite.  

• We took our target processors and placed them 
under the proton beam while running our target 

Table 1.  Experimental System Configuration 
CPU Processor 1x Processor 2x 

Number of CPUs 2 

Frequency 2.8 GHz 3.0 GHz 

Trace Cache 12 Kuops 

L1 Data Cache 16 KB 

L2 Cache 1 MB 2 MB 

Mfg. Process Same 

System Memory 2 GB DDR2 

Memory Speed 200 MHz 

Chipset Intel E7520 Rev. C4 

Southbridge Intel 82801 EB (ICH5) 

Hard Drive 76.3 GB 



                           

benchmarks.  The target systems were configured 
as shown in Table 1 and were running the 32-bit 
version of Microsoft Windows Server 2003 operat-
ing system.  

• Finally, we analyzed the results and corroborated 
our simulation expectations with performance 
counter data obtained using the Vtune™ perform-
ance counter monitoring software. 

The rest of this section describes the AVF simulator 
(Section 2.1), non-timing cache simulator (Section 2.2), 
and our proton beam experimental set up (Section 2.3).  

2.1 Modeling AVF 
To prove our hypothesis that doubling the size of a 

structure can cause a super-linear increase in AVF, we 
used a detailed performance simulator that models a 
Core DuoTM-like processor in the Asim performance 
modeling infrastructure [6] and is augmented with the 
AVF instrumentation.  The AVF instrumentation is 
based on two concepts.  The first was the concept of 
ACE (required for architecturally correct execution) and 
un-ACE (not required for ACE) [13].  AVF for a bit is 
then defined as the ratio of the total time a bit is in ACE 
state and the total simulation time.   The second concept 
was the use of Hamming-distance-one analysis, which 
allows us to compute the AVF of address-based 
structures [3]. Using this AVF-instrumented perform-
ance model, we simulated over 700 benchmark traces.  
The traces were generated as representative regions of 
the given benchmarks based on PinPoints [16].  

2.2 Modeling Cache Misses 
To prove our hypothesis that residence time in the 

cache can increase dramatically, thereby causing a 
significant increase in AVF, we needed a cache 
simulator that could give us the miss rate of selected 
benchmarks for large multi-megabyte caches.  For this 
analysis, we used CMP$im [8]. While the detailed 
performance model referred to in Section 2.1 was much 
faster than a low-level register transfer level model, it 
was neither fast enough to run entire benchmarks to 
completion nor capable of effectively modeling cache 
AVFs for caches greater than 256 KB.    

CMP$im contained no timing information or micro-
architectural details and executed only static instruction 
traces allowing for significantly faster simulations.  This 
allowed us to simulate entire benchmarks with multi-
megabyte caches.  While we could not compute the 
cache AVF from such a model, it did give us the cache 
miss profiles (e.g., miss rate for different benchmarks 
for different cache sizes) from which we could reason 
about our hypothesis and develop our experiment.   

2.3 Measuring SER with protons  
Once we had developed our hypothesis and selected 

the specific benchmarks based on their cache miss 
profiles, we had to irradiate the processors running the 
specific benchmarks under the proton beam. We used 
industry standard practices in measuring the SER of a 
chip arising from atmospheric neutrons using an 
accelerated proton beam, as described in the JEDEC 
standard [1], Hiemstra and Baril [7], and Sanda, et al. 
[18].  The experimental process consists of the follow-
ing steps: 

• Booting the system under test 

• Continuously looping the benchmark of choice 

• Opening the shutter for the particle beam 

• Focusing the beam on the chip of interest (Figure 1) 

• Counting the particle fluence that impinges on the 
chip until system fails 

• Capturing logs of the failure behavior 
The beam diameter is selected to be large enough to 

irradiate the entire silicon chip—in our case the 
microprocessor under test—but not any other silicon 
component in the system.  Also, we needed to only 
compute the DUE rate arising from the processor.  
Hence, we only counted those failures that resulted in a 
processor machine check architecture log signaling a 
DUE error.  Any run that did not give rise to a processor 
machine check log was discarded.  

We chose the Francis H Burr Proton Therapy Center 
proton beam in Boston, Massachusetts due to both beam 
availability and achievable flux considerations. The 
proton beam available at this center is a mono-energetic 
148 MeV proton beam, which is neither a neutron beam 
nor does it mimic the energy spectrum of atmospheric 

 
 
 
 
 
 
 
 
 
 
 Figure 1. Configuration for proton beam 

experiment 



                           

neutrons like the beam at LANSCE in Los Alamos.  The 
LANSCE beam is typically used to compute the SER of 
a chip (after scaling down the flux to reflect the neutron 
flux rate at a specific altitude).   Nevertheless, the use of 
this mono-energetic beam was appropriate for our 
experiments.  The high-energy proton beam appropri-
ately mimics the behavior of neutrons at this higher 
energy [19].  The additional Coulombic charge interac-
tion induced by protons is negligible compared to the 
nuclear forces generated by the high-energy protons 
[14].   

Further, we are only interested in the relative DUE 
AVFs of two silicon chips in the same process technol-
ogy.   The FIT/bit of the L2 cache tags in both chips 
resulting from the nuclear interaction of the mono-
energetic beam will be the same.  Given that AVF itself 
is independent of the FIT/bit, we can still compute the 
relative DUE AVF as described in Equation 4.  

To compute each processor’s DUE Mean Time to 
Failure (MTTF) rate under the mono-energetic proton 
beam, we must conduct an appropriate number of 
experiments to ensure statistical significance.   For each 
experimental run we exposed the same chip to the beam 
until we observe a user-visible error with a correspond-
ing machine check log from the processor signifying a 
DUE error.  This gave us a Time to Failure (TTF) for 
each experiment.  We excluded TTFs that resulted in no 
machine check logs as these were incidences of SDC 
that resulted in system crashes and we were only 
interested in DUE for this study.  The run-to-run 
variation in the measured TTF’s for the same chip was 
large, as expected, given the exponential distribution 
due to the random nature of the process.   We gathered 
10 TTF numbers for each chip, which enabled us to 
detect a DUE MTTF ratio of 4 with 90% confidence, 
and with greater confidence on MTTF ratios that 
measured greater than 4.  We will also show in Section 
5 that 10 runs are sufficient for our results to converge.  

3. Developing the Hypothesis 
The first step in identifying the cause of the super-

linear SER increase was to eliminate possible causes so 
that what remains is the most likely cause of this 
behavior.  The principle we followed is known as Strong 
Inference as described by Platt in his landmark paper 
[17].  Recall from Equation 2 that DUE rate of a circuit 
= DUE AVF of the circuit x intrinsic error rate of the 
circuit.  Thus, either the intrinsic error rate had in-
creased without our knowledge or the AVF had 
increased for some reason.   

3.1 Identifying the Cause 
We ruled out any external or platform-level issues, 

such as faulty power supplies or load lines.  The 
remaining internal possibilities can be divided into four 
categories: electrical, design, manufacturing and AVF.  
By systematically analyzing the processor chip, we 
ruled out electrical problems, such as internal power 
delivery issues, increased RC delay on the cache bit-
lines and word-lines due to the larger cache size, etc.  
We also determined that there were no design-related 
issues, such as a different or defective SRAM cache 
cell.  We also eliminated any manufacturing issues, such 
as defective mask design or different process parame-
ters, to be the cause of this problem.   This left us with 
the only likely root cause—that of increased AVF in the 
larger cache.   Proving that AVF was the most likely 
cause of this problem was no simple feat and is the topic 
of this paper.  

3.2 Identifying the Mechanisms 
We had some indication from our AVF-instrumented 

performance model that significant increases in AVF 
could arise for the same workload when we increased 
the size of a structure.  For example, when changing the 
size of a write-back cache from 32K to 64K, some 
benchmark simulations showed as much as a 100x 
increase in the AVF of the cache data and tags.  In yet 
another example, we observed an AVF increase of about 
13x for the data TLB (translation lookaside buffer) for 
some benchmarks when we increased its size from 64 
entries to 128 entries.    

The underlying cause of this AVF increase is an 
increase in ACE data residency time.  This ACE 
residency time in the bigger structure (e.g., cache, TLB, 
etc) can increase significantly if the working set for a 
given workload fits into the bigger structure but not into 
the smaller structure, thereby causing significantly 
higher miss rates in the smaller structure.  

In the case of a write-back cache, there were two 
distinct mechanisms by which ACE residency time 
could increase.  The first involved increased cache 
misses in the smaller cache that evicted “clean” or 
unmodified cache lines, which rendered ACE time un-
ACE.  The second involved increased cache misses in 
the smaller cache that evicted “dirty” or modified cache 
lines, which forced “dirty” data to be written back 
sooner.  Next, we consider each of these cases in detail. 

The first case is that increased cache misses in the 
smaller cache caused the ACE time of “clean” cache 
lines to become un-ACE.  Figure 2 shows 2 cache lines, 
one from a small cache (referred to as 1x cache from 
here onwards) and one from a 2x larger cache (referred 
to as 2x cache from here onwards).  In the 2x cache 



                           

case, we see a fill followed by 2 reads.  Assuming that 
all accesses are made by ACE instructions, the cache 
line for the 2x cache is ACE from the fill to the last 
read.  In the 1x cache however, we get another cache 
access to an address which maps to this same cache line 
(this same access maps to a different cache line in the 2x 
cache since there are 2x more lines).  This access occurs 
between the 2 read accesses to line A.  This cache miss 
forces an eviction and fill in the 1x cache and, as a 
result, renders the time from the first read to the eviction 
un-ACE. The time from the fill of address B to the 
second read of address A (which misses and re-fills the 
1x cache with the old data) could be ACE or un-ACE 
depending on the accesses to B during this time., Thus, 
this example demonstrates that the AVF for this cache 
line can be significantly greater for the 2x cache than the 
1x cache. 

The second case is specific to a write-back cache.  
Recall that a write-back L2 cache stores processor 
writes in the L2 cache in modified or “dirty” state and 
does not write them back to main memory immediately.  
In this scenario, depicted in Figure 3, we again have 2 
cache lines, one belonging to a 2x cache and one to a 1x 
cache.  In this case, there is a fill followed by a write in 
both caches.  After the write, the cache line becomes 
“dirty” and is ACE from the write until it is written back 
to a higher level of cache or to main memory.  In the 1x 
cache we again see a cache miss that forces an eviction 
of the cache line.  However, since the line is “dirty” this 
will result in the data being written back at this time.  In 
the 2x cache the “dirty” line continues to reside in the 
cache until the end of the program when the cache lines 
are flushed.  As a result, the ACE time and thus the 

AVF for the “dirty” cache line is significantly larger for 
the 2x cache than the 1x cache. 

3.3 Applying Our Hypothesis to the Target 
Cache 
In our specific case, the cache SER anomaly was 

observed in both the write-back L2 cache tags (as 
correctable machine check logs or DUE) as well as the 
L2 cache data (as logged ECC corrections).  The data 
portion of the cache was protected with ECC, so a bit 
flip in the data array resulted in an ECC correction, but 
not a DUE event.   In this case, single-bit errors in both 
“clean” and “dirty” cache lines were correctable.   

The tags however were protected only with parity, 
so a bit flip in the tag array for a “dirty” cache line 
resulted in a DUE event.  Tag parity errors on “clean” 
cache lines were corrected automatically in the design 
by invalidating the corrupt cache line.  An error in a 
“dirty” cache line could not be corrected via the same 
mechanism since the specific cache line had the most 
up-to-date copy.  Thus, a fault in the L2 tag array will 
only result in an actual error in the case depicted in 
Figure 3 since any fault on a “clean” line (Figure 2) is 
recoverable via invalidation.   

Interestingly, however, the ACE  un-ACE conver-
sion in the 1x cache (Figure 3) can be due to recovery of 
“clean” cache lines. In other words, if “dirty” data is 
evicted and replaced by “clean” data in the 1x cache, 
then the clean cache line ends up holding un-ACE data, 
instead of ACE causing the DUE AVF to go down.  

As we can see, both “clean” and “dirty” data can 
cause super-linear increases in SER in the L2 cache tag 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 3. “Dirty” cache line scenario 

Figure 2. “Clean” cache line scenario 



                           

and data arrays.  For the rest of this paper, however, we 
only focus on the cache tag DUE rates because our 
proton beam experiments focused on explicitly measur-
ing the DUE rate of the processors under test.  

4. Choosing the Benchmarks 
As explained in the previous section, we expected 

the L2 cache tag DUE AVF to increase if the “dirty” 
residency times increased.  One way to indirectly 
determine this is to observe whether the cache miss rate 
drops significantly when the cache size is doubled.  
Specifically, the two processors we were irradiating 
under a proton beam had 1MB and 2MB L2 cache sizes, 
so we needed to find benchmarks whose working set did 
not fit in the 1MB cache, but did fit in the 2MB cache.   
This should help ensure that the 1x cache has a higher 
miss rate than the 2x cache.  We also needed bench-
marks whose working set did not fit into either a 1 MB 
or a 2 MB cache.  Using CMP$im, we generated cache 
miss profiles for various SPEC benchmarks for a 1 MB 
and 2MB L2 cache. From these runs we chose 3 specific 
benchmarks that had the desired profiles: art and swim 
from SPEC2000 and libquantum from SPEC2006.   

Figure 4 shows the miss profiles for these three 
benchmarks.  Number of misses is shown on the X-axis 
while the Y-axis shows the various cache sizes that we 
simulated.  The thick vertical lines indicate the 2 target 
cache sizes in each case (1 MB and 2MB).  The miss 
profile for art indicates a significant reduction (~6x) in 
the number of misses when going from a 1MB to a 2MB 
cache.  Thus, we would expect that art should show a 
super-linear SER for the 2MB part than the 1MB part if 
our hypothesis holds.  The miss profiles for libquantum 
and swim indicate that there is no change in the number 
of misses between a 1MB and a 2MB cache.  If our 
hypothesis holds, we do not expect a super-linear SER 
increase for these two benchmarks.  

5. Conducting the Experiment 
We took the two target processors—one with 1MB 

L2 cache and one with 2MB L2 cache in systems 
configured as per Table 1—running the three bench-
marks—art, swim, and libquantum—to the Francis H 
Burr Proton Therapy Center at Massachusetts General 
Hospital in Boston.  Table 2 shows the results of the 
proton experiments for the three target benchmarks.  As 
expected, art showed a super-linear increase in DUE of 
4.25x between the 1 MB and 2 MB parts.  Similarly, as 
expected, the proton measurements for libquantum 
showed a DUE increase of 1.2x from 1 MB to 2 MB 
representing a small 20% increase.  The proton meas-
urements for swim, however, indicated a 3.87x super-
linear increase in the SER rate, which was contrary to 

our expectation since swim’s cache miss rate did not 
change between 1 MB and 2 MB L2 caches.  We will 
analyze these results in detail in Section 0.  

To achieve statistical significance for these numbers, 
we ran 10 repetitions of proton beam experiments for 
each of the 3 benchmarks with each of the 2 processors 
(30 runs total per processor).  This sample size enabled 
us to detect a DUE MTTF ratio of 4 with 90% confi-
dence, and with greater confidence on MTTF ratios 
larger than 4. 

Figure 5 shows this effect graphically.  Since soft 
errors arise from a random process, there is no correla-
tion observed between the duration of subsequent trials.  
A graphical demonstration of how confidence intervals 
for MTTF evolve as more data is collected can be 
obtained by randomizing the order in which the trial 
runs were collected, and computing MTTF as a function 
of number of runs for each of the randomized sets.  
Figure 5 shows how we achieved increased statistical 
confidence for art through the funnel-shaped plot.  
Figure 5 also shows the importance of collecting the 
appropriate number of data points.  An inappropriately 
small number of data points can easily lead to incorrect 
conclusions.  

6. Analyzing the Results 
To explain the DUE ratios given in Table 2, we 

obtained L2 cache-related metrics, shown in Table 3.  
We used Intel’s Vtune™ performance monitoring 
software to poll the hardware performance counters and 
configured the counters to count dirty reads, read 
misses, and write-backs.  The simulation data provided 
misses per thousand instructions (MPKI) and write 
misses.  This data is given in Table 3 in the form of 
2MB:1MB ratios.  A ratio less than 1 represents a 

 1 MB 2 MB 

Figure 4.  Cache miss profiles for art, 
swim, and libquantum. 



                           

decrease from 1 MB to 2 MB while a number greater 
than 1 represents an increase.  A ratio of 1 represents no 
change in that statistic between the two processors.  
Armed with this data, we analyzed the proton beam 
results in the following subsections.   

Note that our goal was not to exactly match the 
numbers or predict the exact increase in DUE or AVF.  
Rather, we are only trying to show that AVF can 
increase super-linearly when the cache size is doubled. 

6.1 Art and libquantum 
As expected from simulations, art showed a super-

linear increase in DUE of 4.25x which was further 
verified by the Vtune™ data and simulation results.  
The simulation statistics for art from Table 3 indicate 
that misses decreased by 6x.  More specifically, write 
misses decreased by 4x when going from 1 MB to 2 
MB, which helped increase the “dirty” data residence 
time in the 2 MB cache.  Similarly, Vtune™ data 
showed that read misses decreased by 3.17x, write-
backs decreased by 32.75x and reads to “dirty” cache 
lines increased by 1.56x from 1 MB to 2 MB.  The 
“dirty” read increase and the significant decrease in 
write-backs are clear indications that the ACE “dirty” 
data residency time did increase super-linearly, thereby 
increasing the AVF in the same way.  

Libquantum beam testing results showed a DUE 
increase of only 1.2x, which is not super-linear, as we 
expected. The simulation and Vtune™ data for libquan-
tum in Table 3 further confirm this hypothesis. All the 
statistics remained very close to 1 indicating little to no 
change in libquantum’s executions across the two cache 
sizes. 

6.2 The swim Conundrum 
The proton measurements for swim indicated a 3.87x 

super-linear increase in the DUE rate, but no change in 
cache miss rates between the 1 and 2 MB L2 caches.  
This was superficially contradictory to our hypothesis 
that the DUE went up super-linearly because the “dirty” 
data (and, hence ACE data) residency time in the cache 
increased.  

Since the cache miss profile as well as the Vtune™ 
and other simulation statistics from Table 3 were so 
similar between libquantum and swim, we looked for 
any fundamental differences between the cache access 
behaviors for these two benchmarks.  One difference 
was in the actual computations performed by each 
benchmark.  Swim’s main loop is primarily a large 
matrix operation while libquantum’s computation is far 
more irregular.  Swim is a shallow water wave modeling 
benchmark which performs a large floating point matrix 
operation over which it iterates.  Libquantum, by 
contrast, is a quantum computer simulation benchmark.   

As a result, one might expect swim to have a more 
regular, strided [11] cache access pattern than libquan-
tum.  Figure 6 shows data generated from our high-level 
cache simulation model clearly showing that swim has 
both a regular access pattern (caused by strided 
accesses) as well as a very regular pattern of “dirty” 
residency while libquantum has far more random cache 
behavior.  In this figure, there are two graphs for each 
benchmark.  The X-axis is time for both graphs.  The Y-
axis is “Accesses per 1000” for the top graph, which 
shows how many cache accesses (loads and stores) 
occurred at a given point in time, and “% Dirty Lines” 

 
 
 
 
 
 
 

 

Table 2. Accelerated proton beam meas-
urement results for art, swim, and libquan-
tum 

Benchmark DUE SER Ratio 
(Processor 2x / Processor 1x) 

Art 4.25 

Swim 3.87 

Libquantum 1.2 

Table 3. Simulation and Vtune™ perform-
ance counter data for art, swim and libquan-
tum 

*Vtune™ 
**Simulation 
 

Art 
Ratio: 

2MB/1MB 

Libquantum  
Ratio:  

2MB/1MB 

Swim 
Ratio: 

2MB/1MB

 MPKI** 1/6.00 1 1 

 Dirty Reads* 1.56 1.06 0.98 

 Write Misses** 1/4.00 1 1 

 Read Misses* 1/3.17 1/1.14 1/1.16 

 Write-backs* 1/32.75 1/0.99 1.00 

Figure 5. Cumulative TTF runs vs. MTTF 
(a.u. = arbitrary unit) 
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for the bottom graph, which is an indication of “dirty” 
line utilization (what percentage of the cache contains 
“dirty” data) at a given point in time. 

We developed an example to determine whether a 
strided cache access pattern can cause increased “dirty” 
residency times while not affecting the number of 
misses when increasing the cache size.  In this example, 
we assume 2 caches, one with 4 entries (1x cache) and 
the other with 8 entries (2x cache).  We assume a 
perfectly strided access, meaning that the cache accesses 
will walk through the entries of the cache.  In the 
simplest case, we assume a single strided write occurs at 
some regular interval.  In this case, once we have 
simulated for a sufficient period of time, both caches 
will simply have “dirty” entries all the time and the 
AVF is 100% for both caches.  Hence, the SER rate will 
increase linearly with cache size while the number of 
misses will remain constant since all writes miss and the 
number of write-backs will remain constant since all 
“dirty” data will be written back at the end of the 
program. 

However, different mixes of reads and writes can 
result in a significant increase in the AVF for strided 
cache accesses.  For instance, if we take the cache size 
and stride assumptions from the simple example and 
change the strided access pattern to be 2 reads followed 
by 1 write, we see the following behavior as detailed in 
Figure 8.   

• At Time=0 we read entry 1 on both caches.  

• At Time=1 we read entry 2 on both caches. 

• At Time=2 we write entry 1 on both caches. 
Assuming the caches started with all entries invalid, 
we now have 2 read misses and 1 write hit for both 
caches.  The write causes the first entry of both 
caches to become “dirty” and so will begin to ac-
crue “dirty” residency time until it is written back.  

• We continue in this fashion until Time=6 

• At Time=6 the first read wraps around to the first 
entry in the 1x cache, invalidating it and forcing it 
to write-back.  However, the first entry in the 2x 
cache continues to be “dirty” since it will not wrap 
around for some time yet.  At this point in our ex-
ample, we begin to see the dirty residency times 
diverge between the two caches while the miss 
counts remain the same. 

• At Time=11, the 2x cache has accumulated a 
“dirty” residency time almost 3x higher than that of 
the 1x cache, yet the miss counts remain roughly 
the same.  

• At the end of the program, all dirty lines will be 
written back so the number of write-backs will be 
the same. 

Here we have shown that a strided access pattern can 
indeed result in a super-linear increase in the “dirty” 
residency time of caches.  Different access patterns of 
reads and writes can change the rate of this super-linear 
increase.  However, the number of misses, “dirty” reads, 
and write-backs can be held very nearly constant 
between the two caches.  This explains how the swim 
benchmark can show a super-linear increase in SER 
while the indirect indicators of cache line residency 
continue to show no differences between the 2 cache 
sizes.  In this case, swim’s strided cache access pattern 
which has a 4:1 ratio of loads to stores, coupled with the 
fact that its data set does not fit cleanly into either cache, 
results in a significant increase in “dirty” cache line 
residency times.  This in turn leads to the significant 
increase in AVF that causes the 3.87x increase in SER 
from the 1 MB to the 2 MB cache. 

 
 
 
 
 
 
 
 
 

a) swim b) libquantum 

Time 

Figure 6. Cache access and “dirty” line utilization patterns for swim and libquantum 



                           

6.3 Summary 
In order to determine the root cause of the super-

linear cache SER when cache sizes double, we em-
ployed numerous methods.  We started by enumerating 
all the possible sources of this increase and eliminating 
all but AVF related effects.  Using simulation data we 

convinced ourselves that size changes in cache arrays 
could indeed result in significant changes in AVF when 
running the same workload.  Using the simulation 
studies we formulated the hypothesis that increases in 
“dirty” cache line residency times were responsible for 
the cache tag AVF increase.  We employed a high-level 
cache model to choose benchmarks that we could use 
for accelerated proton beam testing on actual processors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 8. Example of super-linear “dirty” residency increase for strided cache access 

Figure 7. Example of super-linear “dirty” residency increase for strided cache access 



                           

Armed with these benchmarks, we took two processors 
with 1 MB and 2 MB of L2 cache respectively and 
irradiated them using a proton beam while running 
several iterations of each of the three chosen bench-
marks. 

The proton test results on all three chosen bench-
marks reinforced the hypothesis that increases in “dirty” 
residency times of cache lines led to the super-linear 
DUE SER increase.  We identified two mechanisms by 
which this happens: longer residency times due to lower 
miss rates such as in art (with the opposite effect seen in 
libquantum), and strided cache access patterns causing 
increased “dirty” residency times such as in swim. 

7. Related work 
In this section, we review some related work in the 

areas of AVF sensitivity to structure sizes and SER 
measurements.  Both Biswas et al. [3] and Cai et al. [4] 
noticed that the AVF of a single workload can vary 
significantly as structure sizes change.  However neither 
explored in detail why or how this happens.  Biswas, et 
al. noticed that, even though the AVF of a single 
workload can vary due to structure size, the average 
AVF across numerous workloads tends to stay fairly 
constant across structure sizes.  They did not pursue the 
matter any further than that observation.  Cai et al. noted 
that a single workload AVF can increase as a structure’s 
size increases due to the working set size fitting into the 
structure.  They did not explain the mechanism by 
which this occurs.  Additionally, neither Biswas et al. 
nor Cai et al. attempted to measure the error rates of 
actual systems to corroborate their simulation data. 

Recently, Sanda, et al. [18] described their method-
ology and results for SDC measurement of the 
Power6™ processor using accelerated beam testing.  
There were two main differences between Sanda, et al.’s 
work and the work presented here.  First, Sanda, et al.’s 
measurements targeted SDC, not DUE as in our study.  
DUE errors are easier to measure since they result in a 
machine check log, whereas SDC errors do not result in 
machine check logs and it can take a long time until the 
error becomes user-visible (for instance in the output of 
a program) and can be caused by a variety of unpro-
tected structures on a chip.  Second, Sanda, et al. did not 
provide any data on how structure size changes affect 
the error rate.   

8. Discussion 
We have shown that increases in structure size can 

indeed result in a non-linear increase in SER caused by 
increasing AVFs, but what can we do to account for 
this?  Such SER variation can make it very difficult for 

system users to accurately predict the effect on error 
rates when migrating to new systems with larger caches.   

While such upgrades are easy to characterize for 
performance and power, characterizing for SER in the 
face of architectural and workload dependent variation 
can prove very difficult.  In our particular case, one 
solution would be to protect the L2 cache tags with ECC 
rather than parity.  While this would not eliminate the 
underlying AVF variability, it would reduce the 
incidence of cache DUE to nearly zero since all single-
bit errors would become correctable. 

Another possible solution that addresses the underly-
ing AVF variability is to periodically flush the caches.  
Biswas, et al. [3] proposed periodic cache flushing as a 
way to reduce the AVF of structures such as TLBs and 
caches, showing significant reductions in AVF for a 
minimal performance loss. 

9. Conclusions 
We discovered DUE rates in write-back caches with 

parity-protected tags can increase super-linearly as the 
cache size doubles.  In this paper, we set out to prove 
that Architectural Vulnerability Factor or AVF increases 
brought on by increases in residency time of “dirty” 
cache lines was the root cause of this phenomenon.   

We investigated what appeared to be a DUE SER 
anomaly on the tags for large cache processors using 
several techniques.  We used two different simulation 
models to develop a hypothesis to explain how AVF 
could cause this behavior.  We then designed an 
experiment, choosing three specific SPEC benchmarks 
that exhibited cache miss profiles conducive to proving 
or disproving our hypothesis and measured the DUE 
error rates on two processors (with 1 MB and 2 MB of 
L2 cache, respectively) when running the chosen 
benchmarks.  The results of our accelerated proton beam 
system measurements along with performance counter 
data proved that our hypothesis did indeed hold.  We 
saw a 4.25x DUE SER increase for art, a 3.87x increase 
for swim, and a 1.2x increase for libquantum. 

We identified two ways in which the “dirty” resi-
dency times could increase.  One was by observing the 
miss rates.  As the data set for a workload fits into the 
larger cache, the relative miss rates decrease dramati-
cally, thereby increasing the AVF and causing super-
linear increases in the DUE rate.  This mechanism 
accounted for the super-linear DUE increase measured 
in art as well as the lack of super-linear increase seen in 
libquantum.   

The second involved strided cache accesses.  A 
workload that exhibited regular, strided cache access 
patterns could cause a significant increase in the “dirty” 



                           

residency times of the cache without being reflected in 
either the miss rates or the write-back rates.  Neverthe-
less, this would have the same effect of increasing the 
cache AVF, resulting in a super-linear increase in the 
DUE SER.  This second mechanism accounted for the 
super-linear DUE increase observed for swim. 

We gleaned two important insights from these re-
sults.  First, we must be careful about how we ascertain 
the SDC and DUE AVFs of a processor.  We cannot 
simply assume that the AVF per bit stays constant as 
structure sizes increase across designs.  Finally, we must 
consider ways to reduce the dirty data residency time, 
such as periodic flushing, thereby reducing the SDC or 
DUE rates. 
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