
Abstract

With the continuing growth in the amount of genetic data, members of
the bioinformatics community are developing a variety of data-mining
applications to understand the data and discover meaningful
information. These applications are important in defining the design
and performance decisions of future high performance
microprocessors. This paper presents a detailed data-sharing
analysis and chip-multiprocessor (CMP) cache study of several multi-
threaded data-mining bioinformatics workloads. For a CMP with a
three-level cache hierarchy, we model the last-level of the cache
hierarchy as either multiple private caches or a single cache shared
amongst different cores of the CMP. Our experiments show that the
bioinformatics workloads exhibit significant data-sharing—50–95%
of the data cache is shared by the different threads of the workload.
Furthermore, regardless of the amount of data cache shared, for some
workloads, as many as 98% of the accesses to the last-level cache are
to shared data cache lines. Additionally, the amount of data-sharing
exhibited by the workloads is a function of the total cache size
available—the larger the data cache the better the sharing behavior.
Thus, partitioning the available last-level cache silicon area into
multiple private caches can cause applications to lose their inherent
data-sharing behavior. For the workloads in this study, a shared
32MB last-level cache is able to capture a tremendous amount of
data-sharing and outperform a 32MB private cache configuration by
several orders of magnitude. Specifically, with shared last-level
caches, the bandwidth demands beyond the last-level cache can be
reduced by factors of 3–625 when compared to private last-level
caches. 

1. Introduction

Recent trends in industry show that the future of high performance
computing will be defined by the performance of multi-core
processors [1, 4, 5]. Additionally, recognition, mining, and synthesis
(RMS) workloads in the fields of medicine, investment, business and
gaming are emerging as the memory intensive workloads that will run
on these CMPs [21]. Within these fields, one of the most important
and growing application domains is the field of bioinformatics, where
workloads mine enormous amounts of genetic data to discover
knowledge [14]. This motivates investigating the performance

characteristics of these data-mining workloads to help define the
suitable microarchitectural parameters of future CMPs.

As multi-core processors become pervasive and the number of
on-die cores increases, a key design issue facing processor architects
will be the hierarchy and policies for the on-die last-level cache
(LLC). The most important application characteristics that drive this
cache hierarchy and design are the amount and type of sharing
exhibited by important multi-threaded applications. For example, if
the target multi-threaded applications exhibit little or no sharing, and
the threads have similar working set sizes, a simple “SMP on a chip”
strategy may be the best approach. In such a case, each core has its
own private cache hierarchy. Any memory block that is shared by
more than one core is replicated in the hierarchies of the respective
cores, thereby lowering the effective cache capacity. On a cache miss,
the hierarchies of all the other cores’ caches must be snooped
(depending on the specifics of the inclusion policy). On the other
hand, if the target multi-threaded applications exhibit a significant
amount of sharing, or the threads have varying working set sizes, a
shared-cache CMP is more attractive. In this case, a single, large, last-
level cache—which may be centralized or distributed depending on
bandwidth requirements—is shared by all the on-die cores. Cache
blocks that are referenced by more than one core are not replicated in
the shared cache. Furthermore, the shared cache naturally
accommodates variations in the working set sizes of the different
threads. In essence (and at the risk of oversimplifying), the CMP
design team, building a chip with C cores and having silicon area for
N bytes of last-level cache, must decide between building C private
caches of N/C bytes each, or one large shared cache of N bytes. Of
course, there is a large solution space between the two extremes,
including replication of read-only blocks, migration of blocks, and
selective exclusion to name just a few. However, the key application
characteristics concerning the amount of data-sharing and the type of
sharing is important for the entire design space, and thus we focus on
these characteristics independently of the specific techniques used in
the last-level cache. Since we have focused on the miss-analysis of
shared caches on CMPs, we also ignore the impact of latency on
overall performance.

Having alluded to the fact that future high-performance
processors are tending towards CMPs, the question now is: What are
the important workloads of the future that will run on these CMPs? 

Recent studies have shown that the amount of data in the world is
increasing by 30% each year [21]. Of the many different contributors
to this growing mass of data, the biotechnology community is playing
a major role via contribution of enormous amounts of genetic data
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into GenBank, a database of all publicly known biological sequences.
With the amount of genetic data more than doubling each year [14],
members of the bioinformatics community have developed a variety
of data-mining applications to gather meaningful information from
the data and discover knowledge. With the completion of the
sequencing of the human genome in 2001, the focus in bioinformatics
has now shifted from gathering and sequencing data to developing
intelligent algorithms that mine the massive amounts of known DNA,
RNA, and protein data, with the intent of discovering previously
unknown relationships, structures, and insights. These algorithms are
high performance computing challenges and will help define the
design and performance decisions of future high performance
microprocessors. 

Thus, for the purpose of this study, we chose the emerging class
of bioinformatics applications as our target application set. With this
in mind and with the industry transition towards CMPs, this paper
makes the following contributions:
• We perform a detailed analysis of the sharing behavior of

bioinformatics workloads and show that most of them exhibit a
tremendous amount of data-sharing. With a shared cache, we
show that 50–95% of the data cache is shared by different
threads of the workload and as many as 98% of the accesses to
the last-level cache are to shared cache lines. Furthermore,
application sharing behavior is a function of the total size of the
data cache— the larger the data cache the more an application is
able to exploit its sharing behavior. For example, an application
with a 4MB shared last-level data cache can exhibit 10% data-
sharing; however, increasing the data cache size to 32MB shows
that the workload actually exhibits 90% data-sharing. We show
that for most of the workloads studied, a shared 32MB last-level
cache is able to capture the bulk of an application’s data-sharing.
Furthermore, for these workloads, a shared 32MB last-level
cache can reduce the bandwidth demands beyond the last-level
cache by a factor of 3–625 when compared to a private last-level
cache configuration. This implies that such workloads need the
maximum cache size possible to exploit their inherent data-
sharing behavior. Reducing the cache size or partitioning the
cache into multiple private caches can cause a degradation in
overall cache performance. 

• We show that there is a direct correlation between the amount of
data-sharing and the performance of shared caches. The time
varying behavior of our workloads show multiple phases of
execution where some phases exhibit significant data-sharing
and some phases that do not. For such workloads, we observe
that a shared last-level cache offers tremendous benefits during
the data-sharing phase. To our knowledge, there is no prior study
that correlates the data-sharing behavior of workloads with the
performance of shared or private caches. 

• We also investigate the impact of scaling the number of threads
of the workload on cache performance. By scaling the number of
workload threads from 4 to 8 and 16, and assuming CMPs of 8
and 16 cores each, we observe that shared last-level caches
outperform a private last-level cache by 40-60% when
comparing overall cache miss-rate. 

The rest of the paper is organized in the following manner. Section 2
provides a brief description of the parallel bioinformatics workloads.
Section 3 describes our methodology and the metrics used to measure
application data-sharing. Section 4 provides the sharing

characteristics of the workloads and presents the cache performance
of private and shared caches. Section 5 presents related work. Finally
in Section 6 we provide conclusions of this study. 

2. Background

In this section, we provide a brief description of the OpenMP parallel
bioinformatics workloads studied by Chen et al. [16]. Interested
readers are referred to the original article on the description and
scalability of these workloads [16].
• GeneNet: This application is used to measure the regulatory

relationship between genes. One of the main goals of molecular
biology is to understand the regulation of protein synthesis and
its relation to internal and external signals. In the GeneNet
application, each gene is represented as a variable of a Bayesian
network, and the gene expression problem is formulated as a
Bayesian network structure-learning problem. GeneNet uses
hill-climbing as its main search algorithm. The algorithm is
written in C++ with some details implemented using Intel’s open
source Probabilistic Networks Library (PNL). The training data
input is the cell cycle data of Yeast (173 sequences) [16]. The
total memory working set size of this application is 350MB.

• SNP: This application is used to measure and understand the
patterns of Single Nucleotide Polymorphisms (SNPs). SNPs are
a small genetic change or substitution in the nucleotides of an
individual’s DNA sequence. An important goal here is to
understand the reasoning behind these substitutions. In the SNP
application, each possible nucleotide is represented as a random
variable, and all possible relations between the different
nucleotides are modeled using a Bayesian network structure.
Like GeneNet, the SNP application also uses hill-climbing as its
main search algorithm. The algorithm is written in C++ with
some details implemented using the Probabilistic Networks
Library (PNL). The training input is a 30MB freely
downloadable data set from the HGBASE (Human Genic Bi-
Alletic Sequences), a database of SNPs [3]. There are a total of
616,179 SNPs sequences in the training data set and each
sequence has a length of 50 [16]. The total memory working set
size of this application is 170MB.

• SEMPHY: This application is a tool for constructing
phylogenetic trees. Phylogenetic trees are used to represent the
relationship among different species and possibly describe the
course of evolution. The construction of a phylogenetic tree is a
high performance computing problem, especially with the
growing mass of biological data. The SEMPHY application uses
the structural expectation maximization (SEM) algorithm [22] as
its main search algorithm [8]. The algorithm is written in C++
and handles both DNA and protein sequences. The input data set
are sequences from the Pfam database [6]. The total memory
working set size of this application is 90MB. 

• Support Vector Machines Recursive Feature Elimination
(SVM-RFE): This application is used to eliminate gene
redundancy from a given input data set in order to provide
compact gene subsets. It uses Support Vector Machines (SVM)
as the means to classify genes into different subsets. The SVM-
RFE algorithm is written in C++ and uses the Intel Math Kernel
Library (MKL) to enhance performance. The input data set to
the application is a microarray data set involving ovarian cancer.



The ovarian data set contains 253 (tissue samples) x 15154
(genes) expression values. The total memory working set size of
this application is 300MB. 

• Parallel Linear Space Alignment (PLSA): This application is
used to identify the similarities or differences between two
genetic sequences, e.g. DNA/protein sequences. The similarity
between two sequences (or the lack of it) can provide insight on
understanding the functionality, structure, and evolutionary
relationship of the two sequences. The application uses a
dynamic programming approach to solve the sequence similarity
problem, with the main algorithm being the Smith-Waterman
algorithm [29]. The application is written in C++ and takes as
inputs two sequences each 30,000 letters long. The total memory
working set size of this application is 14MB. 

3. Methodology

We now describe the tools and the hardware platform used to simulate
the cache memory hierarchy.

3.1. Pin

Pin[7, 28] is a tool for the dynamic instrumentation of application
binaries. It supports Linux executables for Intel® Xscale®, IA-32
(32-bit), IA-32E (64-bit), and Itanium® processors. Pin is similar to
the ATOM[31] toolkit for Compaq's Tru64 Unix on Alpha processors.
Like ATOM, Pin provides an infrastructure for writing program
analysis tools called pin tools. The two main components of a Pin tool
are instrumentation and analysis routines. Instrumentation routines
utilize the rich API provided by Pin to insert calls to user defined
analysis routines. These calls are inserted by the user at arbitrary
points in the application instruction stream. Instrumentation routines
are useful in defining what characteristics of an application to
instrument. Analysis routines are called by the instrumentation
routines at application run time. Besides instrumenting single-
threaded applications, Pin also supports the instrumentation of multi-
threaded applications. Pin automatically detects the creation of
threads and internally creates contexts for the newly created threads
without any additional user support. The scheduling of different
threads of the application is controlled by the operating system. 

3.2. SimCMPcache — A CMP cache simulator

For the purpose of our memory-characterization study, we implement
simCMPcache, a pin tool that simulates the cache hierarchy of a
CMP. Figure 1a provides an overview of how workload binaries, Pin,
and simCMPcache interact with each other. The workload essentially
runs on top of Pin; Pin captures relevant information from the
workload and passes it to the simCMPcache pintool. Specifically, for
every memory instruction in the workload, Pin passes to
simCMPcache the associated thread ID, effective address, data size,
and instruction type (load/store). SimCMPcache then takes the
incoming memory instruction information and simulates cache
performance using its internal cache model. 

The cache model in simCMPcache is fully configurable based on
parameters provided by the user. Figure 1b provides an illustrative
view of simCMPcache configured as an 8-core CMP. We model a
three level cache hierarchy—L1, L2, and L3 (last-level cache). The
different levels of the cache can either be private or shared amongst
the CMP cores. We enforce inclusion between all levels of caches. We
model an MSI invalidate-based cache coherence protocol where the
states for the cache line are Modified, Shared, and Invalid. On a write
request, invalidates are sent to the relevant private caches to invalidate
any matching entries. Similarly, when read requests miss in the
private caches, remote dirty lines (if any) are required to perform a
write-back to lower levels of memory before servicing the miss. 

SimCMPcache is capable of gathering a variety of statistics. On a
per-application-thread basis, the simulator tracks the application
instruction profile, cache statistics in terms of accesses and misses,
sharing characteristics of the last-level cache, and statistics on the
coherence traffic between caches. These statistics can be written to a
logfile when the program has finished execution. However, to
characterize the time varying behavior of the application, cache
statistics are logged to file every 10 million instructions committed by
any thread of the application. 

Table 1 presents the methodology for studying the cache
performance of our workloads. For the purpose of this study, we
assume a perfect instruction cache. The L1 data cache is 32KB in
size, 4-way set associative, with 64-byte linesize and a write-through
policy. The L2 cache is 256KB in size, 8-way set associative, with 64-
byte linesize and write-back policy. For the purpose of this study we
do not consider changing the parameters of the L1 and L2 caches.
Finally, the last-level cache is either 4/8/16/32/64 MB, 16-way set

Figure 1: Simulation Methodology. (a) The relationship between the workload, Pin, and the simCMPcache pin tool (b) An example of an 8-core configuration
of simCMPcache (c) Configuration parameters for the study in this paper.

Table 1: Simulation Methodology

Instruction Cache: Not Modeled

L1 Data Cache: 32 KB, private, write-through cache, 4-way set 
associative, 64B linesize, LRU replacement

L2 Data Cache: 256 KB, private, writeback cache, 8-way set associative, 
64B linesize, LRU replacement

L3 / LLC Data Cache: 4, 8, 16, 32, and 64 MB, private/shared, writeback cache, 
16-way set associative, 64B linesize, LRU replacement

Cache Coherence: Invalidate-based MSI protocol

Threads Per Workload: 4, 8, and 16 Threads
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associative, with 64-byte linesize and write-back policy. All caches
allocate on a store miss and use the LRU cache-line replacement
policy. The L1 and L2 cache are modeled as private caches and the
last-level cache can either be private or shared. 

3.3. Hardware platform

To capture the memory-access characteristics of multi-threaded
workloads, our experiments are run on 4-way or 8-way shared
memory multi-processor (SMP) systems of Intel® Pentium® 4
processors. The systems all run the RedHat Linux 7.1 operating
system with hyper-threading enabled. Such systems allow us to run
our workloads with 1 to 16 threads. The workloads are compiled
using the icc compiler with optimization flags -O3. For the purpose of
this study our workloads are executed with 4, 8, and 16 threads. 

3.4. Metrics

To understand the sharing behavior of parallel workloads, we define
the following metrics to measure the degree of data-sharing existent
in parallel applications.
• Shared Cache Line: Cache lines in a shared data cache can

either be private or shared. When executing parallel applications,
an important workload characteristic is a measure of how much
data is shared between threads. One way of measuring the
degree of sharing is to measure the number of cache lines that
are touched by different cores of a CMP. Assuming that the
threads of an application execute on different cores of a CMP,
and threads do not migrate between cores, we define a shared
cache line as one that is accessed by more than one core of a
CMP during its lifetime in the cache. For the purpose of this
study, we classify a shared cacheline as either read-only shared
or read-write shared. Read-only shared cache lines are those
cache lines that are only read from and not written to. For
example, while searching a database in parallel, more than one
thread of a workload can read the same cache line. A read-write
shared cache line is a shared cache line that is used as a means of

communication between threads. A producer thread writes to a
cache line and a consumer reads data from the same cache line.
The shared cache line metric is useful in determining the shared
data footprint of a workload and the type of sharing the
workload exhibits.

• Shared Access: An access to a shared cache line is defined as a
shared access. This metric is useful in determining the variation
and frequency of accesses to shared or private cache lines. Such
a metric not only indicates the amount of data-sharing prevalent
in an application, but it also provides intuition for the choice of
cache design for parallel applications. For example, if most of
the cache accesses are to shared data, then perhaps shared caches
may provide better cache performance than private caches.

• Active-Shared Access: An active shared access is an access to a
shared cache line with the condition that the last core that
accessed the shared cache line is not the same as the current
core. For example, if the accesses to a shared cache line is
represented by the following core ids: ...1, 2, 2, 2, 1, 3, 4, 3, 2, 2,
2, 3, 2..., the accesses by the underlined core IDs are active-
shared accesses. Such a metric is useful in identifying and
characterizing whether workloads share cache lines interactively
or in a serial fashion. Such information can be useful for
determining the benefits of data migration to cache banks closer
to the accessing cores.

4. Characterization results

The OpenMP implementation of the bioinformatics workloads in this
study typically start with a serial initialization or training phase where
only the main thread is active. After the serial phase, threads are
created to perform work during the parallel phase. Even though data
is gathered over the entire run of each workload, unless otherwise
mentioned, we present the behavior of the workloads during the
parallel phase of execution, which dominates overall execution time.
The data presented is averaged over the periodic logs generated by
our cache simulator. 

 
Table 2: Dynamic Application Instruction Distribution

 Instruction Count 
(Billions)

%Memory 
Instructions

% ALU 
Instructions

%Memory Read 
Instructions

PLSA  418.53 B 85.05% 14.95% 49.40%

GeneNet 1,491.49 B 65.54% 34.46% 48.89%

SEMPHY 811.96 B 61.15% 38.85% 46.33%

SNP 59.59 B 45.19% 54.81% 36.85%

SVM 40.91 B 43.52% 56.48% 38.75%

Table 3: First and Second Level Cache Statistics

DL1 Accesses / 
1000 Inst

DL1 Misses / 
1000 Inst

DL1 Miss-rate DL2 Misses / 
1000 Inst

DL2 Read Misses / 
1000 Inst

DL2 Miss-rate

PLSA 850 0.85 0.10 0.04 0.02 0.01

GeneNet 656 4.50 0.68 3.73 3.55 2.21

SEMPHY 611 7.25 1.18 6.83 3.96 4.49

SNP 452 11.57 2.56 11.57 11.33 10.50

SVM 435 97.20 22.30 51.90 50.34 48.05



4.1. Application instruction profile

Table 2 presents the dynamic instruction profile for the different
workloads when run with 4 threads. For each application we present
the total number of instructions executed across all threads and the
distribution of instructions categorized into memory instructions and
ALU instructions. With the CISC nature of the x86 ISA, instructions
can perform arithmetic or logic computation based on operands that
reside either in memory or the register file. Accordingly, we define
memory instructions as those instructions that have one or more
operands in memory and ALU instructions as those instructions that
have all their operands in the register file. We also provide the
breakdown of total instructions that were memory read instructions. 

Based on the application instruction profile, we observe that the
workloads consist of roughly 43–65% memory instructions, with as
many as 85% for the PLSA workload. We also observe that memory
read instructions constitute 60–90% of total memory instructions. The
large share of memory instructions, especially memory read
instructions, is to be expected as these workloads work through large
amounts of data in attempts to discover meaningful patterns or
relationships between data. 

4.2. Workload L1/L2 cache behavior

Table 3 presents the L1 and L2 cache statistics for the different
workloads. For each level of the cache, we present the number of
accesses and misses per 1000 instructions (committed) as well as the
overall cache miss-rate. From the table, PLSA has the lowest L1 data
cache miss-rate and SVM has the largest L1 and L2 data cache miss-
rates. With the exception of PLSA and SVM, comparing the L1 and
L2 misses per 1000 reveals that 80–95% of read accesses that miss in
the L1 data cache usually also miss in the L2 data cache. This implies

that these workloads have two different data sets: one that is small and
frequently used and another that is large and does not fit into the L2
data cache.

4.3. Cache utilization and data-sharing

We now present the workload cache utilization as well as data-sharing
behavior for five last-level cache sizes: 4/8/16/32/64 MB. With four
threads per workload, Figure 2a illustrates, on the y-axis, the percent
of cache utilized as well as the distribution of cache lines shared
amongst different threads. In the figure, for each workload, the five
bars represent the different last-level cache sizes in increasing order
with the left most bar representing the 4MB last-level cache. Each bar
is split into four categories: the bottommost portion represents those
cache lines that are private, the next one up represents those cache
lines shared by 2 threads, the next one up represents those cache lines
shared by 3 threads, and finally the topmost portion represents those
cache lines that are shared by 4 threads. From the figure, with the
exception of PLSA, these workloads fully utilize a 64MB last-level
cache (last bar graph for each workload). PLSA’s entire memory foot
print fits in a 16MB last-level cache. Unlike SPEC workloads (that
barely utilize a 2-8MB last-level cache), the large memory working-
set sizes of these workloads will continue to put pressure on processor
and DRAM architects to reduce the ever growing “memory gap”.

Figure 2a also illustrates that the workloads present a varying
amount of data-sharing. Some workloads exhibit very little data-
sharing, as in the case of SNP where only 2% of a 64MB cache is
shared by two threads. GeneNet, SEMPHY, and SVM demonstrate a
cache with data that is either private or shared amongst two to four
threads. On the other hand, PLSA demonstrates data that is either
private or shared amongst two or three threads. This behavior goes to

Figure 2: Sharing Behavior with a Shared Last-Level Cache. Distribution of (a) shared data in last-level cache (b) cache accesses to data in last-level cache
(c) cache accesses to actively shared data in last-level cache (d) classification of data-sharing in last level cache (e) write accesses to data in last-level cache. 
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show that even though workloads are run with four threads,
workloads need not share data cache lines amongst all four threads.
For example, based on PLSA’s dynamic programming algorithm, data
can only be shared by a maximum of three threads. However, there is
one caveat: even though algorithmically data can not be shared by all
threads of a parallel workload, data-sharing between all threads may
still exist for purposes of synchronizing between all the threads of the
workload. 

Based on Figure 2a, it can be seen that the amount of sharing
varies with the size of the data cache. Increasing the size of the data
cache can either increase or decrease the percent of shared data in the
cache. A decrease in the percent of shared data with increasing cache
sizes implies that an application’s shared data footprint is smaller than
the private data footprint. For example, in GeneNet, increasing the
data cache size beyond 4MB causes the amount of shared data in the
cache to decrease from 20% in a 4MB cache to 5% in a 64MB cache.
Similarly, increasing the cache size beyond 32MB for SVM causes
the amount of shared data in the cache to decrease from 90% in a
32MB cache to 55% in a 64MB cache. Such behavior provides a
good indication of the total shared working-set of these workloads.

Alternatively, increasing the size of the cache can also increase
the ratio of shared data in the cache. This is because conflict and
capacity misses in smaller caches can result in the eviction of
potential shared data. For example, a cache line that is actually shared
amongst four cores of a CMP can be evicted due to a cacheline
conflict immediately after the first core brings the cacheline into the
cache. Increasing the cache capacity reduces the number of conflict
misses and provides opportunity for both private and shared data to
co-exist in the cache. This behavior is evident in the workloads
PLSA, SEMPHY, SNP, and SVM and can be better explained by the
distribution of accesses to the shared cache. 

Figure 2b illustrates, on the y-axis, the distribution of accesses to
the shared last-level cache. In the figure, the five bars represent the
different last-level cache sizes. Each bar graph is split into five
categories based on the type of cache access. Cache accesses are
divided into accesses that miss in the data cache and accesses that are
either to private or shared (by two, three, or four threads) cache lines.
From the figure, for all workloads besides GeneNet, increasing the
data cache size reduces the percent of cache misses in the last-level
cache. For these workloads, a direct correlation exists between the
reduction in cache misses and the increase in the amount of shared
data in the cache. Particularly with SVM, almost 90% of cache
accesses in a 4 or 8 MB last-level cache result in a cache miss.
However, reducing the number of conflict misses by increasing the
data cache size reveals that SVM, which initially exhibited very little
data-sharing with a 4MB cache, actually exhibits a tremendous
amount of data-sharing with a larger cache size (compare with Figure
2a). Based on this behavior, we can conclude that workloads require
the maximum possible cache space available to exploit their inherent
data-sharing behavior. We will show that attempting to reduce the size
of the cache or partition the cache into multiple smaller independent
caches proves detrimental to cache performance.

Figure 2b shows an interesting behavior in terms of the cache
access patterns for several of the workloads. For workloads that share
their data cache lines, most of the cache accesses to the last-level
cache are to the shared data. For example, with a 64MB shared last-
level cache, 62% of PLSA’s cache accesses (in some phases of
execution as much as 100%) are to its 8MB shared footprint, 60% of
GeneNet’s cache accesses are to its 4MB shared footprint, and 98% of

SEMPHY and SVM’s cache accesses are to their 56MB and 32MB
shared footprints respectively. Furthermore, Figure 2c shows, on the
y-axis, the distribution of active-shared accesses to the last-level
cache. Recall that an active-shared access is an access to a shared data
cache line by core Ci and the last access to the same cache line was
not Ci. For the workloads, 30–80% of cache accesses are to data
shared that is interactively shared by two to four threads. Thus, from
Figure 2b and 2c, we conclude that workloads not only access shared
data frequently, but they also access the shared data interactively
rather than in a per-thread serial fashion. 

Based on the data presented in this section, we observe that most
of the workloads exhibit a significant amount of data-sharing. Sharing
is not only exhibited by the existence of shared data in the cache but
also by the large distribution of interactive accesses to the shared data.
We show that sharing is exposed when other factors such as cache
misses are removed from the scene. Hence, reducing or partitioning
last-level caches can cause an application to lose its sharing behavior.
We show later in the paper that the loss of sharing can place
unnecessary demands for bandwidth on the memory subsystem, or
could require extensive last-level cache snoop bandwidth if such an
implementation technique is employed. 

4.4. Data-sharing classification

Having demonstrated that these applications exhibit large amounts of
data-sharing, we now analyze the type of data-sharing. Figure 2d
illustrates, on the y-axis, the distribution of cache lines categorized
into those that are private, read-only shared, and read-write shared.
From the figure, 30–50% of PLSA, SEMPHY, and SVM’s cache lines
are read-write shared while GeneNet and SNP’s cache lines are
mostly private. To better understand the type of data-sharing in these
workloads, Figure 2e illustrates, on the y-axis, the percent of write
accesses to the shared last-level cache. From the figure, GeneNet,
SNP, and SVM exhibit negligible write-accesses, hence we can
classify them as read-shared workloads. Even though SVM exhibits
30% read-write shared cache lines, the negligible amount of write-
accesses to the last-level cache classifies SVM as a read-shared
workload. On the other hand, roughly 30–40% of SEMPHY and
PLSA’s write accesses are to shared data. This implies that both
PLSA and SEMPHY are read-write shared workloads. This motivates
investigation into the coherence traffic behavior of these workloads.
Based on the type of data sharing exhibited, we conclude that even
though some workloads exhibit negligible write accesses to the
shared last-level cache, the fact that the workloads exhibit extensive
read sharing emphasizes the need for shared caches to avoid
unnecessary duplication of data. 

4.5. Performance of private and shared last-level caches

Figure 3 presents the cache metrics for the private and shared last-
level cache configurations for the different workloads. In each figure,
the first five bars represent private last-level caches, and the last five
bars represent shared last-level caches. The performance of the
private cache is plotted as the average of the performance of all
private caches. We remind the reader that when using private caches,
the total on-die last-level cache is partitioned equally amongst
different cores of the CMP. Thus, with 4 cores, and with on-die last-
level cache sizes of 4/8/16/32/64 MB, the private last-level cache
sizes are 1/2/4/8/16 MB each. For each cache, we present accesses per



1000 instructions, misses per 1000 instructions, and cache miss-rate.
The accesses and misses per 1000 are presented on a logarithmic
scale to accommodate the varying behavior of the workloads.

As expected, from Figure 3a, the cache access rates for both the
private and shared last-level cache are identical. Furthermore, varying
the last-level cache size does not affect the cache access rate. This is
to be expected as we do not vary the sizes of the first and second level
caches. We note that minor variations are expected, and are due to the
already known repeatability problem [13] of running workloads
multiple times on real machines with real operating systems. 

As expected, Figure 3c shows that increasing the size of the
private last-level cache aids in reducing the overall cache miss-rate by
3–50%. GeneNet and SNP show no significant improvements in
cache performance with larger private (or shared) caches, most likely
due to little data reuse and frequent misses in the last-level cache
(one-third to one-half of accesses to the last-level cache result in
cache misses). We observe that all workloads, besides PLSA, require
heavy memory bandwidth, with 4–50 misses per 1000 instructions
(GeneNet has execution phases with 4–5 misses per 1000
instructions). PLSA fits well in the private L2 cache as the core of the
dynamic programming algorithm works on small blocks of a matrix
before moving onto the next block. 

We now compare the performance of shared last-level caches to
that of private caches. From figure 3b, we observe that with small
shared last-level caches, a shared last-level cache in general performs
as well or better than the same sized partitioned private last-level
cache. For example, a shared 8 MB last-level cache has similar cache
performance as a 32 MB private last-level cache configuration (i.e.
each of the four cores has an allotted private 8MB cache). This can be
explained by the fact that accesses to shared data causes only one
miss in a shared cache. However, with a private cache configuration,
an access to uncached shared data results in a cache miss in the
private cache of each core. For example, in a four-core CMP, an
access to data (that is initially not present in the last-level cache)
shared by all four cores results in a 100% overall cache miss-rate with
the use of a private cache and a 25% overall cache miss-rate with the
use of a shared cache. This is because, with a shared cache, the access
by the first core fills the cache with the missing data, hence all
successive requests for the same data from other cores of the CMP hit
in the cache. On the other hand, with a private cache, all cores miss in
their respective private caches. 

We observe that the reduction in miss-rate translates into
reductions in the bandwidth demands beyond the last-level cache by
as much as a factor of 625. Based on Figure 3b, the number of last-

level cache misses (per 1000 instructions) for a 64MB cache reduces
from 0.1 to 0.03 for PLSA, 6.27 to 0.01 for SEMPHY and 24.2 to
0.98 for SVM when the last-level cache is changed from private to
shared. Furthermore, these workloads benefit the most from a shared
last-level cache as 98% of their last-level cache accesses were to
shared data. This reinforces the fact that workloads that frequently
access shared data tend to benefit the most from shared caches.

From the figure, we also observe that GeneNet and SNP receive
little or no benefit with a shared last-level cache. Both these
workloads exhibit little data-sharing and have poor last-level cache
performance. For the different last-level cache sizes that we
simulated, independent of the size of the last-level cache, roughly 30–
50% of all accesses result in a cache miss (see Figure 2b). This is
perhaps the primary reason for these workloads not exhibiting
significant data sharing—potential shared cache lines are evicted
from the cache due to conflict misses before other threads have a
chance to access them. Based on such behavior, data-sharing
parameters may need to be considered in cache allocation and
eviction policies. This is discussed as part of our future work.

PLSA, SEMPHY, SNP, and SVM all present a constant behavior
during the course of execution—they either share or do not share their
data. However, workloads can have multiple phases of execution
where some phases exhibit significant data-sharing while other
phases exhibit a lesser degree of data-sharing. For such workloads, a
shared last-level cache can offer tremendous benefits in the data-
sharing phase. Of the five workloads, GeneNet displays this behavior.
Figure 5b (in the appendix) shows the detailed cache behavior of
GeneNet over its entire run. From the figure, during the first 1/8th
phase of execution, GeneNet exhibits a tremendous amount of data-
sharing—close to 80% of cache accesses are to shared data. During
this phase, a shared last-level cache has roughly one-third the miss-
rate of a private last-level cache (22% vs. 78%). For other phases of
execution, 50–60% of cache accesses are to shared cache lines, and
during this phase the shared last-level cache performs better than the
private last-level cache by 5–10% on average. Thus, the time-varying
sharing behavior of GeneNet further reinforces the fact that a shared
last-level cache is highly beneficial when workloads exhibit a large
amount of data-sharing. 

Based on the data presented, we conclude that workloads or
phases of execution that heavily access shared data tend to benefit the
most with shared last-level caches. Since the workloads in this study
display a large amount of data-sharing, a shared last-level cache can
provide tremendous opportunity to reduce the bandwidth demands
beyond the last-level cache. Furthermore, with parallel applications in

Figure 3: Performance of Private and Shared Last-Level Caches. (a) Accesses / 1000 Instructions (b) Misses / 1000 Instructions (c) Miss-rate. Note that
figures (a) and (b) are on a logarithmic scale to accommodate the varying behavior of the different workloads.
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other emerging domains [9, 12], extensive data-sharing may force
shared last-level caches to be a necessity in future CMPs. 

4.6. Performance of private and shared last-level caches in 
larger CMPs (8 and 16 cores)

Based on the performance of the different caches, we observe that
maximum cache performance is achieved while moving from a
16MB cache to a 32MB cache. Beyond a 32MB cache size, all
workloads, other than SVM, receive marginal improvements in terms
of cache performance. Based on this data, we chose to determine the
cache performance of these workloads with a 32MB last-level cache
while varying the core count from 4 to 8 and 16 cores (i.e. the
workloads are run with 8 and 16 threads). Note that our purpose for
scaling the workloads is to quantify the impact on miss-rate with an
increasing core count while keeping the cache size fixed. Figure 4
illustrates the amount of data-sharing, distribution of cache accesses,
and a comparison of private and last-level cache performance for the
different workloads. In Figures 4a and 4b, the three bar graphs for
each workload represent the 4, 8, and 16 threaded runs. The legend of
each individual bar graph is similar to the legends of Figure 2b except
that additional legend entries are present for the 8 and 16 thread
configurations to represent cache lines that are shared amongst 5, 6,
7,..., 14, 15, and 16 threads. 

Based on Figure 4a and 4c, scaling the number of threads for the
workloads increases the cache utilization as well as the cache miss-
rate. The increase in cache utilization can be explained by the fact that
the working sets of these workloads are not entirely shared. Each
additional worker thread adds its own private data to the workload
data footprint, hence increasing the overall data footprint of the
workload. Consequently, the increase in footprint translates into an
increase in the overall cache miss-rate. Furthermore, we also point out
that an increase in cache miss-rate with private caches can also be
explained by the fact that the size of the private partitions of each core
decreases when the number of on-chip cores increases. For example,
with a 32MB last-level cache, each private cache in a 4-core CMP is
8MB in size, while in a 8 and 16-core CMP each private cache is
4MB and 2MB in size respectively. Thus, the reductions in the sizes
of the private cache partitions per core also contributes to an increase
in the overall cache miss-rate with private last-level caches. 

Figure 4c compares the cache performance of private and shared
caches. In the figure, the first three bars represent the workloads run
with 4, 8 and 16 threads with a private cache, and the last three
represent those that are run with shared caches. For the workloads in
this study, with larger CMPs a shared cache configuration reduces the
overall miss-rate by 40–60% when compared to a private cache
configuration. Additionally, the performance of shared caches varies
as the core count of the CMP is scaled up to 8 and 16 cores. PLSA
and SVM experience a 20–30% increase in the over-all cache miss-
rate while GeneNet, SNP, and SEMPHY experience marginal
increases in the over-all cache miss-rate. With 4 threads, SVM and
PLSA fit well into a 32MB cache, however scaling them to 8 and 16
threads increases the cache miss-rate. This can be explained by the
fact that both PLSA and SVM’s data footprint is not entirely shared,
each new thread adds additional private data footprint. As a result,
Figure 4b illustrates that the additional per-thread private data
footprint causes as many as 30% of cache accesses to miss in the data
cache. The increase in the number of cache misses results in potential
shared lines to be evicted from the data cache hence reducing the total
amount of shared data in the last-level cache. On the other hand, for
the workloads GeneNet and SEMPHY, the additional per-thread
private data portion of the total working set is relatively small, hence
the marginal increase in the over-all cache miss-rate. This implies that
such workloads can potentially achieve super-linear speedup with the
scaling up of the number of threads as cache performance is
unaffected.

Based on the data presented in this paper, the key point is that
shared last-level caches are essential for the workloads in this study to
have good cache performance. By scaling the number of CMP cores,
we conclude that the performance of a shared last-level cache can out-
perform a private last-level cache by 40–60% in terms of over-all
cache miss-rate. Hence, given the option of designing private or
shared last-level caches, we conclude that shared last-level caches are
a necessity for this emerging class of data-mining workloads.

5. Related work

Bioinformatics has emerged as an important application domain for
future high performance microprocessors. Consequently, industry has
invested resources in characterizing the scalability and performance
of common bioinformatics applications. Cheng et al. looked at the

Figure 4: Cache Performance of Workloads Executed With 4, 8, and 16 Threads With a 32MB Last-Level Cache. (a) Distribution of data in shared last-
level cache (b) Distribution of accesses to data in shared last-level cache (c) Performance comparison of private and shared last-level caches.
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scalability of bioinformatics applications like BLAST, FASTA,
HMMER, etc. on the IBM eServer pSeries 690 [18]. Chen et al.
looked at the scalability and performance of data mining
bioinformatics applications [16, 17]. Sun Microsystems presented a
whitepaper on the challenges faced and the opportunities available in
the field of computational biology [10]. Furthermore, the Informatics
Benchmarking Toolkit (IBT) provided by BioTeam compares the
performance of common bioinformatics applications [2]. In
academia, Albayraktaroglu et al. compiled the BioBench suite of
bioinformatics applications and characterized their behavior and
differences from the SPEC benchmark suite [14]. 

Recent studies have investigated the design for the cache-
hierarchy of CMPs. Liu et al. discussed the tradeoffs of implementing
shared and private caches and proposed a mechanism of allocating
multiple last-level private caches to one core of a CMP [25]. Chishti
et al. presented novel mechanisms of optimizing replication,
coherence communication, and exploiting unused cache space in
CMPs [19]. Zhang et al. proposed victim replication to achieve the
benefits of private caches with shared caches [33]. Speight et al.
looked at CMP performance through intelligently handling write-
backs [30].

Characterizing the memory behavior and performance of parallel
workloads is an area of ongoing research. Abandah et al. proposed a
configuration-independent approach to analyze the working set,
concurrency, and communication patterns, as well as sharing behavior
of shared memory applications [11]. They present the Shared-
Memory Application Instrumentation Tool (SMAIT) to measure
different sharing characteristics of the NAS shared-memory
applications [12]. Barroso et al. characterized the memory system
behavior of commercial workloads such as Oracle, TPC-B, TPC-D,
and the AltaVista search engine [15]. They performed their
characterization of the memory system behavior using ATOM [31],
performance counters on an Alpha 21164, and the SimOS simulation
environment. Woo et al. characterized several aspects of the
SPLASH-2 benchmark suite [32]. They used an execution-driven
simulation with the Tango Lite [23] tracing tool. Perl et al. studied
Windows NT applications on Alpha PCs and characterized
application bandwidth requirements, memory access patterns, and
application sensitivity to cache size [27]. Chodneker et al. analyzed
the time distribution and locality of communication events in some
message-passing and shared-memory applications [20]. Nurvitadhi et
al. used an FPGA-based cache model (PHA$E) that connects directly
to the front-side bus to analyze the shared vs. private L3 cache
behavior of SPECjAppServer and TPC-C [26]. 

Our work differs from prior work in that it performs a detailed
last-level cache characterization of the emerging class of
bioinformatics data-mining workloads. We perform a detailed data-
sharing analysis of these workloads over their entire execution
without using any tracing mechanisms, performance counters, or “bus
sniffers”. Contrary to existing trace driven and execution driven
methodologies, we use the binary instrumentation approach to
characterize the cache performance of workloads over their entire run.
We believe this to be the first study that characterizes the cache
performance of data-mining workloads from the perspective of a
CMP. Additionally, we also believe this to be the first study that
clearly correlates cache sizes and cache performance with workload-
sharing behavior. 

6. Conclusions and future work

The study in this paper gives important insight into workloads that
will be very important in future high-performance machines, and this
insight is valuable to architects of new CMPs. We show that the
bioinformatics data-mining workloads used in this study exhibit a
tremendous amount of data-sharing—50–95% of the data cache is
shared by different threads of the workload. Furthermore, regardless
of the amount of data cache shared, for some workloads, as many as
98% of the accesses to the last-level cache can be to the shared data.
Additionally, the amount of data-sharing exhibited by the workloads
is a function of the total cache size available; the larger the data cache
the better the sharing behavior. Thus, rather than partitioning the last-
level cache into multiple private caches, we show that a shared last-
level cache is important for improving the performance of these
workloads on future high performance machines. With a shared last-
level cache, the bandwidth demands beyond the last-level cache can
be reduced by factors of 3–625 when compared to a private last-level
cache configuration. Thus, we conclude that, given the option of
designing shared or private last-level caches in future CMPs, a shared
last-level cache is the logical choice of implementation as it allows
workloads to exploit their data-sharing behavior and significantly
reduce the bandwidth demands beyond the last-level cache. 

Looking ahead, our on-going work focuses on investigating the
performance bottlenecks of these workloads using performance
models. Additionally, we are also studying the sensitivity of the
sharing behavior of these workloads to varying data input sizes.
Furthermore, we are also exploring the use of novel cache allocation
and replacement policies that can allow applications to exhibit the
sharing behavior observed in large last-level caches with smaller last-
level caches.
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Appendix

This section presents the time varying behavior of the workloads.
We present the distribution of private and shared data in the cache, the
distribution of accesses to private and shared data, and the private and
shared last-level cache miss-rates. The data is presented for the 4MB,
16MB, and 64MB last-level cache sizes. Each graph illustrates the
total instruction count (in billions) on the x-axis and the appropriate
metric represented as a percent on the y-axis. 
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Figure 5: Time Varying Behavior of Parallel Bioinformatics Workloads. The figure shows the time varying behavior of those benchmarks that exhibited
data sharing (SNP exhibited no sharing hence is not displayed). The x-axis represents the total number of instructions executed (in billions) and the y-axis
represents the appropriate metric presented as a percent. The private last level cache miss-rate is presented as the average miss-rate of all private caches. This
figure is best viewed as a soft copy or a color printout.
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