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Abstract
Performance gains in memory have traditionally been

obtained by increasing memory bus widths and speeds. The
diminishing returns of such techniques have led to the
proposal of an alternate architecture, the Fully-Buffered
DIMM. This new standard replaces the conventional
memory bus with a narrow, high-speed interface between the
memory controller and the DIMMs. This paper examines
how traditional DDRx based memory controller policies for
scheduling and row buffer management perform on a Fully-
Buffered DIMM memory architecture. The split-bus
architecture used by FBDIMM systems results in an average
improvement of 7% in latency and 10% in bandwidth at
higher utilizations. On the other hand, at lower utilizations,
the increased cost of serialization resulted in a degradation
in latency and bandwidth of 25% and 10% respectively. The
split-bus architecture also makes the system performance
sensitive to the ratio of read and write traffic in the
workload. In larger configurations, we found that the
FBDIMM system performance was more sensitive to usage
of the FBDIMM links than to DRAM bank availability. In
general, FBDIMM performance is similar to that of DDRx
systems, and provides better performance characteristics at
higher utilization, making it a relatively inexpensive
mechanism for scaling capacity at higher bandwidth
requirements. The mechanism is also largely insensitive to
scheduling policies, provided certain ground rules are
obeyed.
1.  Introduction
The growing size of application working sets, the popularity
of software-based multimedia and graphics workloads, and
increased use of speculative techniques, have contributed to
the rise in bandwidth and capacity requirements of computer
memory sub-systems. Capacity needs have been met by
building increasingly dense DRAM chips (the 2Gb DRAM
chip is expected to hit the market in 2007) and bandwidth
needs have been met by scaling front-side bus data rates and
using wide, parallel buses. However, the traditional bus
organization has reached a point where it fails to scale well
into the future.

The electrical constraints of high-speed parallel buses com-
plicate bus scaling in terms of loads, speeds, and widths [1].

Consequently the maximum number of DIMMs per channel in
successive DRAM generations has been decreasing. SDRAM
channels have supported up to 8 DIMMs of memory, some
types of DDR channels support only 4 DIMMs, DDR2 channels
have but 2 DIMMs, and DDR3 channels are expected to support
only a single DIMM. In addition the serpentine routing required
for electrical path-length matching of the data wires becomes
challenging as bus widths increase. For the bus widths of today,
the motherboard area occupied by a single channel is signifi-
cant, complicating the task of adding capacity by increasing the
number of channels. To address these scalability issues, an alter-
nate DRAM technology, the Fully Buffered Dual Inline Mem-
ory Module (FBDIMM) [2] has been introduced.

The FBDIMM memory architecture replaces the shared par-
allel interface between the memory controller and DRAM chips
with a point-to-point serial interface between the memory con-
troller and an intermediate buffer, the Advanced Memory
Buffer (AMB). The on-DIMM interface between the AMB and
the DRAM modules is identical to that seen in DDR2 or DDR3
systems, which we shall refer to as DDRx systems. The serial
interface is split into two uni-directional buses, one for read traf-
fic (northbound channel) and another for write and command
traffic (southbound channel), as shown in Fig 1. FBDIMMs
adopts a packet-based protocol that bundles commands and data
into frames that are transmitted on the channel and then con-
verted to the DDRx protocol by the AMB. 

The FBDIMMs’ unique interface raises questions on
whether existing memory controller policies will continue to be
relevant to future memory architectures. In particular we ask the
following questions: 
• How do DDRx and FBDIMM systems compare with

respect to latency and bandwidth? 
• What is the most important factor that impacts the

performance of FBDIMM systems? 
• How do FBDIMM systems respond to choices made

for parameters like row buffer management policy,
scheduling policy and topology? 
Our study indicates that an FBDIMM system provides sig-

nificant capacity increases over a comparable DDRx system at
relatively little cost. for systems with high bandwidth require-
ments. However, at lower utilization requirements, the
FBDIMM protocol results in an average latency degradation of
25%. We found the extra cost of serialization is also apparent in



configurations with shallow channels i.e. 1-2 ranks per channel,
but can be successfully hidden in systems with deeper channels
by taking advantage of the available DIMM-level parallelism. 

The sharing of write data and command bandwidth is a sig-
nificant bottleneck in these systems. An average of 20-30% of
the southbound channel bandwidth is wasted due to the inability
of the memory controller to fully utilize the available command
slots in a southbound frame. These factors together contribute to
the queueing delays for a read transaction in the system.

More interestingly, we found that the general performance
characteristics and trends seen for applications executing on the
FBDIMM architecture were similar in many ways to that seen
in DDRx systems. We found that many of the memory control-
ler policies that were most effective in DDRx systems were also
effective in an FBDIMM system. 

This paper is organized as follows. Section 2 describes the
FBDIMM memory architecture and protocol. Section 3
describes the related work. Section 4 describes the experimental
framework and methodology. Section 5 has detailed results and
analysis of the observed behavior. Section 6 summarizes the
final conclusions of the paper.
2.  Background
2.1  FBDIMM Overview

As DRAM technology has advanced, channel speed has
improved at the expense of channel capacity; consequently
channel capacity has dropped from 8 DIMMs to a single DIMM
per channel. This is a significant limitation—for a server
designer, it is critical, as servers typically depend on memory
capacity for their performance. There is an obvious dilemma:
future designers would like both increased channel capacity and
increased data rates—but how can one provide both? 

For every DRAM generation, graphics cards use the same
DRAM technology as is found in commodity DIMMs, but
operate their DRAMs at significantly higher speeds by avoiding
multi-drop connections. The trend is clear: to improve band-
width, one must reduce the number of impedance discontinui-
ties on the bus.

This is achieved in FBDIMM system by replacing the multi-
drop bus with point-to-point connections. Fig 1 shows the
altered memory interface with a narrow, high-speed channel
connecting the master memory controller to the DIMM-level
memory controllers (called Advanced Memory Buffers, or
AMBs). Since each DIMM-to-DIMM connection is a point-to-
point connection, a channel becomes a de facto multi-hop store
& forward network. The FBDIMM architecture limits the chan-
nel length to 8 DIMMs, and the narrower inter-module bus
requires roughly one third as many pins as a traditional organi-
zation. As a result, an FBDIMM organization can handle
roughly 24 times the storage capacity of a single-DIMM DDR3-
based system, without sacrificing any bandwidth and even leav-
ing headroom for increased intra-module bandwidth.

The AMB acts like a pass-through switch, directly forward-
ing the requests it receives from the controller to successive
DIMMs and forwarding frames from southerly DIMMs to
northerly DIMMs or the memory controller. All frames are pro-

cessed to determine whether the data and commands are for the
local DIMM. 
2.2  FBDIMM protocol
The FBDIMM system uses a serial packet-based protocol to
communicate between the memory controller and the
DIMMs. Frames may contain data and/or commands.
Commands include DRAM commands such as row activate
(RAS), column read (CAS), refresh (REF) and so on, as well
as channel commands such as write to configuration registers,
synchronization commands etc. Frame scheduling is
performed exclusively by the memory controller. The AMB
only converts the serial protocol to DDRx based commands
without implementing any scheduling functionality.

The AMB is connected to the memory controller and/or
adjacent DIMMs via serial uni-directional links: the south-
bound channel which transmits both data and commands and
the northbound channel which transmits data and status infor-
mation. The southbound and northbound data paths are respec-
tively 10 bits and 14 bits wide respectively. The channel is dual-
edge clocked i.e. data is transmitted on both clock edges. The
FBDIMM channel clock operates at 6 times the speed of the
DIMM clock i.e. the link speed is 4 Gbps for a 667 Mbps DDRx
system. Frames on the north and south bound channel require
12 transfers (6 FBDIMM channel clock cycles) for transmis-
sion. This 6:1 ratio ensures that the FBDIMM frame rate
matches the DRAM command clock rate. 

Southbound frames comprise both data and commands and
are 120 bits long; data-only northbound frames are 168 bits
long. In addition to the data and command information, the
frames also carry header information and a frame CRC check-
sum that is used to check for transmission errors. 

The types of frames defined by the protocol [3] are illustrated
in the figure 2. They are

Command Frame: comprises up to three commands
(Fig 2(a)). Each command in the frame is sent to a separate

Figure 1. FBDIMM Memory System. TIn the FBDIMM
organization, there are no multi-drop busses; DIMM-to-
DIMM connections are point-to-point. The memory
controller is connected to the nearest AMB, via two uni-
directional links. The AMB is in turn connected to its
southern neighbor via the same two links.
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DIMM on the southbound channel. In the absence of
available commands to occupy a complete frame, no-ops
are used to pad the frame.

Command + Write Data Frame: carries 72 bits of
write data - 8 bytes of data and 1 byte of ECC - and one
command on the southbound channel (Fig 2b). Multiple
such frames are required to transmit an entire data block to
the DIMM. The AMB of the addressed DIMM buffers the
write data as required. 

Data frame: comprises 144 bits of data or 16 bytes of
data and 2 bytes of ECC information (Fig 2(c)). Each
frame is filled by the data transferred from the DRAM in
two beats or a single DIMM clock cycle. This is a
northbound frame and is used to transfer read data.

A northbound data frame transports 18 bytes of data in 6
FBDIMM clocks or 1 DIMM clock. A DDRx system can burst
back the same amount of data to the memory controller in two
successive beats lasting an entire DRAM clock cycle. Thus, the
read bandwidth of an FBDIMM system is the same as that of a
single channel of DDRx system. A southbound frame on the
other hand transports half the amount of data, 9 bytes as com-
pared to 18 bytes, in the same duration. Thus, the FBDIMM
southbound channel transports half the number of bytes that a
DDRx channel can burst write in 1 DIMM clock, making the
write bandwidth in FBDIMM systems one half that available in
a DDRx system. This makes the total bandwidth available in an
FBDIMM system 1.5 times that in a DDRx system.

The FBDIMM has two operational modes: the fixed latency
mode and the variable latency mode. In fixed latency mode, the
round-trip latency of frames is set to that of the furthest DIMM.
Hence, systems with deeper channels have larger average laten-
cies. In the variable latency mode, the round-trip latency from
each DIMM is dependent on its distance from the memory con-
troller. 

Figure 3 shows the processing of a read transaction in an
FBDIMM system. Initially a command frame is used to trans-
mit a command that will perform row activation. The AMB
translates the request and relays it to the DIMM. The memory
controller schedules the CAS command in a following frame.
The AMB relays the CAS command to the DRAM devices
which burst the data back to the AMB. The AMB bundles two
consecutive bursts of a data into a single northbound frame and
transmits it to the memory controller. In this example, we
assume a burst length of 4 corresponding to 2 FBDIMM data
frames. Note that although the figures do not identify parame-
ters like t_CAS, t_RCD and t_CWD [4, 5] the memory control-
ler must ensure that these constraints are met.

Figure 4 shows the processing of a memory write transaction
in an FBDIMM system. The write data requires twice the num-
ber of FBDIMM frames than the read data. All read and write
data are buffered in the AMB before being relayed on, indicated
by the staggered timing of data on the respective buses. The
CAS command is transmitted in the same frame as the last
chunk of data.

Figure 2. FBDIMM Frames. The figure illustrates the various types of FBDIMM frames used for data and command
transmission.
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3.  Related Work
Burger et. al. [6] demonstrated that many high-performance
mechanisms lower latency by increasing bandwidth demands.
Cuppu et. al. [7] demonstrated that memory manufacturers
have successfully scaled data-rates of DRAM chips by
employing pipelining but have not reduced the latency of
DRAM device operations. In their follow-on paper [8] they
showed that system bus configuration choices significantly
impact overall system performance.

There have been several studies of memory controller
polices that examine how to lower latency while simultaneously
improving bandwidth utilization. Rixner et. al. [9] studied how
re-ordering accesses at the controller to increase row buffer hits
can be used to lower latency and improve bandwidth for media
processing streams. Rixner[10] studied how such re-ordering
benefitted from the presence of SRAM caches on the DRAM
for web servers. Natarajan et. al. [11] studied how memory con-
troller policies for row buffer management and command
scheduling impact latency and sustained bandwidth. 

Lin et. al. [12] studied how memory controller based pre-
fetching can lower the system latency. Zhu et. al. [13] studied
how awareness of resource usage of threads in an SMT could be
used to prioritize memory requests. Zhu et. al. [14] study how
split-transaction support would lower the latency of individual
operations.

Intelligent static address mapping techniques have been used
by Lin et. al. [12] and Zhang et. al. [15] to lower memory
latency by increasing row-buffer hits. The Impulse group at
University of Utah [16] proposed adding an additional layer of
address mapping in the memory controller to reduce memory
latency by mapping non-adjacent data to the same cacheline and
thus increasing cacheline sub-block usage. 

This paper studies how various memory controller policies
perform on the fully-buffered DIMM system. By doing a
detailed analysis of the performance characteristics of DDRx
specific scheduling policies and row buffer management poli-
cies on the FBDIMM memory system, the bottlenecks in these
systems and their origin are identified. To the best of our knowl-

edge, this is the first study to examine the FBDIMM in this
detail. 
4.  Experimental Framework
This study uses DRAMsim [4], a stand-alone memory system
simulator. DRAMsim provides a detailed execution-driven
model of a fully-buffered DIMM memory system. The
simulator also supports the variation of memory system
parameters of interest including scheduling policies, memory
configuration i.e. number of ranks and channels, address
mapping policy etc.

We studied four different DRAM types: a conventional
DDR2 system with a data-rate of 667Mbps, a DDR3 system
with a data rate of 1333Mbps and their corresponding
FBDIMM systems: an FBDIMM organization with DDR2 on
the DIMM and another with DDR3 on the DIMM. FBDIMM
modules are modelled using the parameters available for a
4GB module [3]; DDR2 device are modelled as 1Gb parts
with 8 banks of memory [5]; DDR3 parameters were based on
the proposed JEDEC standard[17]. A combination of multi-pro-
gram and multi-threaded workloads are used. We used applica-
tion memory traces as inputs.
•SVM-RFE (Support Vector Machines Recursive
Feature Elimination) [18] is used to eliminate gene
redundancy from a given input data set to provide com-
pact gene subsets. This is a read intensive workload (reads
comprise approximately 90% of the traffic). It is part of
the BioParallel suite[24].
•SPEC-MIXED comprising of 16 independent SPEC
[19] applications including AMMP, applu, art, gcc, lucas,
mgrid, swim, vortex, wupwise, bzip2, galgel, gzip, mcf,
parser, twolf and vpr. The combined workload has a read
to write traffic ratio of approximately 2:1. 
•UA is Unstructured Adaptive (UA) benchmark which is
part of the NAS benchmark suite, NPB 3.1 OMP [20].
This workload has a read to write traffic ratio of approxi-
mately 3:2. 
•ART the Open MP version of the SPEC 2000 ART
benchmark which forms part of the SPEC OMP 2001
suite[21]. This has a read to write ratio of around 2:1. 

RAS CAS

D0

Figure 4. Write Transaction in FBDIMM system. The figure shows how a write transaction is performed in an FBDIMM
system. The FBDIMM serial buses are clocked at 6 times the DIMM buses. Each FBDIMM frame on the southbound bus takes
6 FBDIMM clock periods to transmit. A 32 byte cacheline takes 8 frames to be transmitted to the DIMM. 
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All multi-threaded traces were gathered using CMP$im [22],
a tool that models the cache hierarchy. Traces were gathered
using 16-way CMP processor models with 8 MB of last-level
cache. SPEC benchmark traces were gathered using Alpha
21264 simulator sim-alpha [23], with a 1 MB last-level cache
and an in-order core. 

Several configuration parameters that were varied in this
study include:
Number of ranks and their configuration. FBDIMM
systems support six channels of memory, each with up to
eight DIMMs. This study expands that slightly,
investigating a configuration space of 1-64 ranks, with
ranks organized in 1-8 channels of 1-8 DIMMs each.
Though many of these configurations are not relevant for
DDRx systems, we study them the impact of serialization
on performance.We study configurations with one rank per
DIMM.
Row-buffer management policies . We study both open-
page and closed-page systems. Note that the address
mapping policy is selected so as to reduce bank conflicts
in the system. The address mapping policies
sdram_close_page_map and sdram_hiperf_map [4]
provide the required mapping for closed page and open
page systems respectively.
Scheduling policies . Several DDRx DRAM command
scheduling policies were studied. These include 
•Greedy The memory controller issues a command as
soon as it is ready to go. Priority is given to DRAM com-
mands associated with older transactions.

•Open Bank First (OBF) is used only for open-page
systems. Here priority is given to all transactions which
are issued to a currently open bank.
•Most pending is the “most pending” scheduling policy
proposed by Rixner [9], where priority is given to DRAM
commands to banks which have the maximum number of
transactions.
•Least pending: is the “least pending” scheduling policy
proposed by Rixner [9]. Commands to transactions to
banks with the least number of outstanding transactions
are given priority.
•Read-Instruction-Fetch-First (RIFF): prioritizes
memory read transactions (data and instruction fetch)
over memory write transactions.

5.  Results
We study two critical aspects of the memory systems
performance: the average latency of a memory read
operation, and the sustained bandwidth. 
5.1  The Bottom Line 
Figure 5 compares the behavior of the different DRAM
systems studied. The graphs show the variation in latency and
bandwidth with system configuration for the SPEC-Mixed
workload executing in an open page system. In the graphs
systems with different topologies but identical numbers of
ranks are grouped together on the x-axis. Within a group, the
bars on the left represent topologies with more ranks/channel
and as one moves from left to right, the same ranks are
distributed across more channels. For example, for the group
of configurations with a total of 8 ranks of memory, the

Figure 5. Latency and Bandwidth characteristics for different DRAM technologies. The figure shows the best latency
and bandwidth characteristics for the SPEC-Mixed workload in an open page system. Systems with identical numbers of
dimms are grouped together on the x-axis. Within a group, bars on the left represent topologies with lesser numbers of
channels. The left y-axis depicts latency in nano-seconds, while the right y-axis plots bandwidth in Gbps. Note that the lines
represent bandwidth and the bars represent latency.
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leftmost or first bar has the 8 ranks all on 1 channel, the next
bar has 2 channels each with 4 ranks, the third bar has 4
channels with 2 ranks each and the rightmost in the group has
the 8 ranks distributed across 8 channels i.e. 8 channels with 1
rank each. A more detailed explanation of the latency
components will be given in later sections. 

The variation in latency and bandwidth follow the same gen-
eral trend regardless of DRAM technology. This observation is
true for all the benchmarks studied. At high system utilizations,
FBDIMM systems have average improvements in bandwidth
and latency of 10% and 7% respectively, while at lower utiliza-
tions DDRx systems have average latency and bandwidth
improvements of 25% and 10%. Overall though, FBDIMM sys-
tems have an overall average latency which is 15% higher than
those of DDRx systems, but have an average of 3% better band-
width. Moving from a DDR2 based system to DDR3 system
improves latency by 25-50% and bandwidth by 20-90%. 

Figure 6 compares the behavior of the different workloads
studied. All data is plotted for a DDR2 closed page system (not
open page system as in the earlier figure) but is fairly represen-
tative for other DRAM technologies as well. The variation in
latency and bandwidth are different for each different workload.
The performance of SPEC-Mixed improve until a configuration
with 16 ranks, after which it flattens out. ART and UA see sig-
nificant latency reductions and marginal bandwidth improve-
ments as channel count is increased from 1 to 4. By contrast,
SVM-RFE which has the lowest memory request rate compared
to all the applications does not benefit by increasing the number
of ranks.

Figure 7 shows the latency and bandwidth characteristics for
the SPEC-MIXED and ART workload in a closed page system.
The relative performance of a FBDIMM system with respect to
its DDRx counterpart is a strong function on the system utiliza-
tion. At low system utilizations the additional serialization cost
of an FBDIMM system is exposed, leading to higher latency
values. At high system utilizations, as in the single channel
cases, an FBDIMM system has lower latency than a DDRx sys-
tem due to the ability of the protocol to allow a larger number of
in-flight transactions. Increasing the channel depth typically
increases the latency for FBDIMM systems while DDRx sys-
tems experience a slight drop. For DDRx systems the increase
in ranks essentially comes for free because the DDRx protocols
do not provide for arbitrary-length turnaround times. For
FBDIMM systems with fewer channels the latency of the sys-
tem drops with increasing channel depths. By being able to
simultaneously schedule transactions to different DIMMs and
transmit data to and from the memory controller, FBDIMM sys-
tems are able to offset the increased cost of serialization. Fur-
ther, moving the parallel bus off the motherboard and onto the
DIMM helps hide the overhead of bus turn-around time. In the
case of more lightly loaded systems like some of the multi-
channel configurations, due to the lower number of in-flight
transactions in a given channel, we find that FBDIMMs are
unable to hide the increased transmission costs.

The bandwidth characteristics of an FBDIMM system are
better than that of the corresponding DDRx system for the het-
erogeneous workload - SPEC-Mixed (Fig 7d). SPEC-Mixed
have concurrent read and write traffic and are thereby able to
better utilize the additional system bandwidth available in an
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FBDIMM system. The improvements in bandwidth are more in
configurations which are more busy i.e. lesser number of chan-
nels. Busier workloads tend to use both FBD channels simulta-
neously, whereas the reads and writes have to take turns in a
DDRx system. As channel count is increased and channel utili-
zation gets lower, and the gains in bandwidth diminish till they
vanish completely. This is especially true for DDR3 based sys-
tems due to the significantly higher data rates and consequently
lower channel utilization. In the case of the homogenous work-
loads, e.g. ART (Fig 7c), which have lower request rates, vary-
ing the number of channels and ranks does not have signifcant
impact. 

The RIFF scheduling policy which prioritizes reads over
writes has the lowest read latency value for both DDRx and
FBDIMM systems. No single scheduling policy is seen to be
most effective in improving the bandwidth characteristics of the
system. 
5.2  Latency
In this section, we look at the trends in latency, and the factors
impacting them, in further detail. The overall behavior of the
contributors to the read latency are more characteristic of the
system and not particular to a given scheduling policy or row
buffer management policy. Hence, we use a particular row
buffer management policy, RIFF in the case of closed page
systems and OBF in case of open page systems for the
discussion. 

Figure 8 shows the average read latency divided into queue-
ing delay overhead and the transaction processing overhead.
The queueing delay component refers to the duration the trans-
action waited in the queue for one or more resources to become
available. The causes for queueing delay include memory con-
troller request queue availability, south link availability, DIMM
availability (including on-DIMM command and data buses and

bank conflicts), and north link availability. Note that the overlap
of queueing delay is monitored for all components except the
memory controller request queue factor. The default latency
cost is the cost associated with making a read request in an
unloaded channel. 

The queueing delay experienced by a read transaction is
rarely due to any single factor, but usually due to a combination
of factors. Changing the system configuration, be at by adding
more ranks in the channel or increasing the number of channels
in the system, result in a change in the availability of all the
resources to a different degree. Thus, we see that the latency
trends due to changes in a configuration are affected by how
exactly these individual queueing delays change. 

Typically, single-rank configurations have higher latencies
due to insufficient number of memory banks to distribute
requests to. In such systems the DIMM is the dominant system
bottleneck and can contribute as much as 50% of the overall
transaction queueing delay. Adding more ranks in these system
helps reduce the DIMM-based queueing delays. The reductions
are 20-60%, when going from a one rank to a two-rank channel.
For 4-8 rank channel, the DIMM-based queueing delay is typi-
cally only 10% of that in the single-rank channel. 

In an FBDIMM system, the sharing of the southbound bus
by command and write data results in a significant queueing
delay associated with southbound channel unavailability.
Applications ART, SPEC-MIXED and UA, which have a fair
proportion of write traffic experience fairly significant queueing
delays due to the unavailability of the southbound channel (Fig
8 b, c, d). In nearly all cases, the southbound channel queueing
delay is reduced by increasing the number of channels in the
system. Some reductions in southbound channel unavailability
are also achieved by adding more ranks in the system. In a
multi-rank channel, the memory controller is more likely to be
able to pack multiple commands in the same frame. Though the

Figure 7. Latency and Bandwidth characteristics for 
different DRAM technologies. The figures plot the 
best observed latency and bandwidth characteristics for 
the various DRAM technologies studies for different 
system sizes for ART and SPEC-Mixed. The y-axis for 
figures a and b shows the average latency and for 
figures c and d show the observed bandwidth. The 
x-axis is the various system topologies grouped 
according to channel. In each channel group, points 
to the left represent configurations with lesser 
number of ranks.  

(a) ART-Latency 

1 2 4 8

ART Number of ranks

1 2 4 8

Number of Channels

0

50

100

150

200
La

te
nc

y 
(n

s)

FBD_DDR3
DDR3
FBD_DDR2
DDR2

1 2 4 8

Number of Channels

0

50

100

150

200

La
te

nc
y 

(n
s)

(b) SPEC-MIXED-Latency 

(d) SPEC-MIXED-Bandwidth

(c) ART-Bandwidth

SPEC-MIXED

SPEC-MIXED

ART

1 2 4 8

Number of Channels

0

5

10

15

20

Ba
nd

w
id

th
 (G

bp
s)

1 2 4 8

Number of Channels

0

10

20

30

40

50

60

70

80

90

100

110

120

Ba
nd

w
id

th
 (G

bp
s)



opportunities to do so are limited, this can result in a decrease in
southbound channel unavailability by 10-20% when increasing
the number of ranks in a channel from 1 to 2. 

Increasing the channel depth raises the transmission costs for
frames on the channel. This results in an increase in the read
latency with increasing channel depth for SVM-RFE (Fig 8 a)
and for the other workloads at larger channel widths when the
utilization is low. Interestingly, the additional DRAM-level par-
allelism available in a deeper channel can counter the rise in
frame transmission costs sufficiently to reduce overall latency
(Fig 8 c- f). The gains in parallelism are especially apparent
when going from a single-rank to a two-rank channel. These
gains gradually taper off for further increases in channel depth. 

With deeper channels, the increased number of in-flight
transactions results in an increase in the queueing delay due to
the link-unavailability. This is attributable to the heightened
competition for the bus due to the additional number of in-flight
transactions. This increase can combine with the increase in
processing cost to offset the gains due to increased DIMM-level
parallelism. Thus, we see that for UA and ART, Fig 8d and 8 b
respectively, that the latency increases in a single channel sys-
tem when the channel depth is increased from 4 to 8. The inter-
action of the increase in processing overhead, number of in-
flight transactions using the channel, the type of these transac-
tions and the lowering of DIMM-level conflicts result in the dif-
ferent latency trends observed across various benchmarks. 

All the applications had higher latency values in an open
page system than in a closed page system. Interestingly the dif-
ferences were more pronounced for the homogenous work-

loads, such as UA etc., than for the SPEC-MIXED workload.
Figure 8 e, f show the latency characteristics for ART and
SPEC-MIXED respectively, in an open page system using the
Open-Bank-First (OBF) scheduling policy. Although single-
application workloads like ART see significant locality of
accesses, the access pattern is such that requests to the same
DRAM row are interspersed with accesses to different DRAM
rows in the same bank. Consequently, the OBF memory sched-
uler delays handling read requests that arrived earlier in order to
satisfy a later arriving a request that maps to a currently open
row. This can result in an increase in queueing delay for the read
transactions which in turn increases average read latency. The
SPEC-MIXED workload experiences a 20-30% bank hit rate
which is far lower than the 50-70% experienced by the homoge-
nous workloads, but experiences a far lesser degradation in read
latency in an open page system. The arrival and interaction of
the various address streams at the memory controller results in
the memory controller keeping pages open for a shorter dura-
tion. Hence, only requests to the same DRAM page that are a
short distance apart are able to use the open page. More impor-
tantly, requests that are far apart and target the same page do not
end up delaying the servicing of intermediate requests to differ-
ent DRAM rows. 

Figure 9 provides a pictorial representation of the scheduling
policy having the lowest latency for different system topologies
for the ART and SPEC-MIXED workloads. Similar behavior
was exhibited by the other workloads as well. RIFF, which pri-
oritizes read requests over write requests, performs the best for
most of the cases. Although RIFF is effective in reducing read
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latency it can increase the latency of a read that is stalled wait-
ing for an earlier write to complete. In general, this phenome-
non does not exhibit itself often enough for most of the
applications. In an open page system the RIFF scheduling pol-
icy also does better than a scheduling policy like OBF, which
attempts to reduce read latency by exploiting DRAM locality.
The OBF scheduler can delay servicing a read request in order
to handle an earlier issued write command which experiences a
page hit. The RIFF scheduler on the other hand prioritizes the
read traffic, thereby resulting in the RIFF scheduler performing
better than the OBF scheduler.

Figure 10 shows the average percentage improvement in
latency obtained by operating the system in variable latency
mode. All numbers are given for a closed page system, but sim-
ilar behavior was observed in an open page system as well.
FBD-DDR2 performed similarly to FBD-DDR3. The variable
latency mode was effective in lightly loaded systems, as in the
case of systems with 2-8 channels of memory and all configura-
tions for the SVM-RFE workload. As expected, the variable
latency mode is more effective for systems with deeper chan-
nels. 

On the other hand in a heavily loaded system, using variable
latency mode increases the average read latency. In variable
latency mode the read data latency for a transaction is depen-

dent on the distance of the rank from the memory controller.
Consequently using this mode lowers the effective utilization of
the north link by introducing idle slots between read data returns
from different ranks. As the channel depth increases, the dura-
tion of the idle gaps increases, making the latency characteris-
tics worse (Figure 10 (b)). 
5.3  Channel Utilization
5.3.1  Sustained Bandwidth
Unlike the case of read latency, the sustained bandwidth is
less sensitive to the choice of scheduling policy. More than
80% of the cases are relatively insensitive to the scheduling
policy and no clear winner emerges for the remaining 20% of
the cases. Figure 11 shows the variation in bandwidth for the
SPEC-Mixed and UA. 

The sustained bandwidth achieved improves for the SPEC-
Mixed (Fig 11 a, b) with increasing channel depth for both open
page and closed page systems. Note that all the bandwidth
curves are dome-shaped, with the general shape of the dome a
function of the number of channels in the system. This shows
that as DIMMs are added to a channel, bandwidth is increased
via increased support for concurrency. However, as more ranks
are added to a channel, you get increasing numbers of resource
conflicts which lowers bandwidth. A closed page system con-

Figure 9. Best Scheduling Policy for Total Bandwidth The figure shows the scheduling policy having the best latency 
characteristics for each different configurations for the various applications studied.A scheduling policy emerges as the 
winner if the observed mean latency for the given configuration is 2.5% or more better than the worst performing 
scheduling policy for a given configuration point. Note that none implies that no clear winner emerged. All data for 
FBDIMM is in fixed latency mode. 
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figuration see 2.5-10% improvement in bandwidth over an open
page system.

In the case of UA (Fig 11 b, d), closed page configurations
had slightly better bandwidth characteristics than open page
configurations. In a single channel configuration, all the sched-
uling policies that re-ordered requests based on DRAM locality
were more effective than the RIFF policy. This is because these
approaches tended to satisfy transactions, irrespective of type
faster than RIFF. By prioritizing read traffic, the RIFF policy
would end up delaying writes to a currently open bank and
thereby lower overall throughput.
5.3.2  South Link Utilization
The FBDIMM south link is shared by both commands and
write data. The graphs in figure 12 provide the distribution of
bandwidth utilization of the different types of FBDIMM
frames. A command frame can carry up to three commands
while a command-data frame carries 9 bytes of data (8-bytes
of data and 1 ECC-byte) and one command. In the figure,
command frames are further distinguished by the number of
occupied command slots. The system does not send a data
frame unless data is present thus there are no zero-data
frames.

For workloads with a significant proportion of write traffic,
the south link emerges as the bottleneck. The UA-B, ART and
SPEC-MIXED workloads (Fig 12 (a, c, d) use 35-70% of the
south link bandwidth. Nearly two-thirds of this utilized band-
width is used to transmit write data. On the other hand for a
read-dominated workload like SVM-RFE (Fig 12(b)), the
southbound link is used to transmit only command frames.

Despite the ability to send multiple commands in a frame, the
opportunities to do so are more limited. Across all benchmarks,
we found that the memory controller is more likely to schedule
a command by itself. In a read-intensive workload like SVM-
RFE (Fig 12 b), with a lower proportion of write traffic the com-
mand frame is more likely to be sent with 2 NO-OPS. For work-
loads with write-traffic like UA-B, SPEC-Mixed and ART (Fig

12 (a, c, d)) a data payload is sent along with the command.
With increases in channel depth, these workloads see a slight
increase in the number of command frames that have 2 valid
commands. Regardless of the channel depth, less than 5% of the
frames sent have 3 commands in them and less than 10% of the
frames have 2 or more commands. 

The command bandwidth used by an open page system is a
function of the bank hit rate. A transaction in an open page sys-
tem uses only one DRAM command when there is a hit to an
open row and at least three commands (RAS, CAS and PRE-
CHARGE) when there is a bank conflict. A closed page system
on the other hand uses two commands, RAS and CAS with
implicit precharge for each operation. Any open page system
that has less than 50% bank hit ratio will have a higher com-
mand utilization. In the case of the SPEC-Mixed workloads the
bank hit ratio is in the range of 20-30% and hence the command
bandwidth requirement is higher (as seen by comparing Fig
12(d) and Fig 12 (e)) but in the case of ART, the bank hit rate is
around 50 - 70 % resulting in slightly lower command band-
width requirements for an open page case (Figs 12(c) and (f)). 
5.4  Summary of Results
Our study indicates that an FBDIMM system provides
significant capacity increases over a DDRx system at
comparable performance. Although an FBDIMM system
experiences an overall average latency increase compared to
the corresponding DDRx system, we found that by efficiently
exploiting the extra DIMM-level parallelism in a busier
system the latency costs can be significantly lowered and
even eliminated. The split-bus architecture makes the
performance of the system sensitive to the ratio of read to
write traffic. For instance, it enables workloads with both read
and write traffic to sustain higher bandwidths than in a DDRx
system. Workloads that use the system heavily tend to record
higher gains because they tend to use both channels
simultaneously.
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Even more interestingly the behavior of an application in the
conventional memory architecture and the newer one are simi-
lar. The RIFF scheduling policy typically has the lowest latency
in all cases, while no single scheduling policy had significantly
higher bandwidth utilization. The performance of open page
systems was sensitive to the distance between accesses to the
same DRAM row and the types of the requests. Many of the
scheduling policies, such as open bank first, most pending etc.,
attempt to exploit locality in the DRAM rows to lower latency.
We found that in addition to all these factors, a controller policy
that prioritizes reads over writes is more effective. A designer
who implements such a policy should take care to give higher
priority to outstanding write transactions that delay read trans-
actions to the same bank and to periodically drain write requests
in order to prevent the memory transaction queue from filling
up. 

The sharing of the write data and command bandwidth
results in the southbound channel being a significant bottleneck.
This competition for the bus impacts the latency of a memory
read access as well. This problem is further aggravated because
the memory controller is unable to fully utilize the command
slots in a southbound frame.

While the variable latency mode is effective in lowering the
latency of a read transaction in a system by 2.5-20% in lightly
loaded systems, the exact opposite effect was observed at higher
utilizations. This suggests that a controller that dynamically
switches the mode of operation in response to changes in sys-
tem utilization would see less performance degradation. 

6.  Conclusions
To the best of our knowledge, this is the first study of the
performance characteristics of a fully-buffered DIMM
memory system. This study examines how currently existing
memory controller policies perform on this new memory
architecture and how the FBDIMM architecture performs
relative to a DDRx system. We found that the performance of
an FBDIMM system is comparable to that of a conventional
DDRx system and memory controller policies used on the
latter are still relevant in the former, provided that reads and
writes are prioritized appropriately. The latency and
bandwidth characteristics of an FBDIMM system are better
than a DDRx system for configurations where there is more
DIMM-level parallelism and sufficient memory traffic. Like
in DDRx based systems a scheduling policy that favours read
traffic over write traffic has better latency characteristics.

FBDIMM systems are able to provide increased capacity at
higher utilizations with no performance losses. However, these
gains do not come for free. The AMB is expected to increase the
per DIMM power consumption by the order of 4 W in an
FBDIMM-DDR2 system [3]. In our future work we would like
to study how memory controller policies can be used to improve
the power envelope of these systems.
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