
Sandbox Prefetching: Safe Run-Time Evaluation of Aggressive Prefetchers

Seth H Pugsley1, Zeshan Chishti2, Chris Wilkerson2, Peng-fei Chuang3, Robert L Scott3, Aamer

Jaleel4, Shih-Lien Lu2, Kingsum Chow3, and Rajeev Balasubramonian1

1University of Utah, {pugsley, rajeev}@cs.utah.edu
2Intel Labs, {zeshan.a.chishti, chris.wilkerson, shih-lien.l.lu}@intel.com

3Intel Software and Services Group, {peng-fei.chuang, robert.l.scott, kingsum.chow}@intel.com
4Intel Corporation VSSAD, aamer.jaleel@intel.com

Abstract

Memory latency is a major factor in limiting CPU per-

formance, and prefetching is a well-known method for hid-

ing memory latency. Overly aggressive prefetching can

waste scarce resources such as memory bandwidth and

cache capacity, limiting or even hurting performance. It

is therefore important to employ prefetching mechanisms

that use these resources prudently, while still prefetching

required data in a timely manner.

In this work, we propose a new mechanism to deter-

mine at run-time the appropriate prefetching mechanism for

the currently executing program, called Sandbox Prefetch-

ing. Sandbox Prefetching evaluates simple, aggressive

offset prefetchers at run-time by adding the prefetch ad-

dress to a Bloom filter, rather than actually fetching the

data into the cache. Subsequent cache accesses are tested

against the contents of the Bloom filter to see if the ag-

gressive prefetcher under evaluation could have accurately

prefetched the data, while simultaneously testing for the ex-

istence of prefetchable streams. Real prefetches are per-

formed when the accuracy of evaluated prefetchers exceeds

a threshold. This method combines the ideas of global

pattern confirmation and immediate prefetching action to

achieve high performance. Sandbox Prefetching improves

performance across the tested workloads by 47.6% com-

pared to not using any prefetching, and by 18.7% compared

to the Feedback Directed Prefetching technique. Perfor-

mance is also improved by 1.4% compared to the Access

Map Pattern Matching Prefetcher, while incurring consid-

erably less logic and storage overheads.

1 Introduction

Modern high performance microprocessors employ

hardware prefetching techniques to mitigate the perfor-

mance impact of long memory latencies. These prefetch-

ers operate by predicting which memory addresses will be

accessed by a program in the near future and then specu-

latively issuing memory requests for those addresses. The

performance improvement afforded by a prefetcher depends

on its ability to correctly predict the memory addresses ac-

cessed by a program. Accurate prefetches hide the memory

latency of potential demand misses by bringing data earlier

to the on-chip caches. In comparison, inaccurate prefetches

result in two problems: First, they increase the contention

for the available memory bandwidth, which could result in

both performance losses and energy overheads. Second,

they waste cache capacity, which could result in additional

cache misses, contributing to the problem they were in-

tended to solve. In fact, there is often a trade-off between

prefetch accuracy and coverage, i.e., to bring in more use-

ful cache lines, the prefetcher must also bring in more use-

less cache lines. Therefore, before employing a prefetching

technique, it is important to weigh the relative benefit of ac-

curate prefetches against the bandwidth and cache capacity

concerns of inaccurate prefetches.

One common approach to maximizing prefetcher accu-

racy is to track streams of accesses in the address space.

This is done by observing several memory accesses form-

ing a regular pattern, and then predicting that pattern will

continue in subsequent memory accesses. These prefetch-

ers can be accurate, but take some time to confirm streams

before any performance benefit can be reaped.

Other techniques, such as next-line prefetchers, or even

the use of larger cache lines, harvest fine grained spatial

locality, but do so blindly for all memory references with-

out first evaluating the benefits. As a result, these prefetch-

ers may increase bandwidth and power while providing no

performance benefit. Kumar et al. [17], took advantage

of the benefits of fine grained spatial locality while avoid-

ing the overheads of superfluous prefetches by maintaining

bit-vectors indicating which nearby cache lines were most

likely to be used after a reference to a particular cache line



occurred. The key drawback of this approach is the over-

head of storing the bit vector for each footprint.

In this paper, we build on the previous work on prefetch-

ers that exploit fine grained spatial locality. Rather than

build and store patterns as in [17], our approach evaluates

a few previously defined patterns and identifies at run-time

which patterns are most likely to provide benefit. Since not

all previously defined prefetch patterns are appropriate for

all workloads, we must identify when and where specific

patterns will benefit performance.

To address this problem we introduce the concept of a

“Prefetch Sandbox.” The key idea behind a prefetch sand-

box is to track prefetch requests generated by a candidate

prefetch pattern, without actually issuing those prefetch re-

quests to the memory system. To test the accuracy of a

candidate prefetcher, the sandbox stores the addresses of

all the cache lines that would have been prefetched by

the candidate pattern. We implement the sandbox using a

Bloom filter for its space efficiency and constant lookup

time. Based on the number of simulated prefetch hits, a can-

didate prefetcher may be globally activated to immediately

perform a prefetch action after every cache access, with no

further confirmation.

Our results show that using the proposed Sandbox

Prefetching technique improves the average performance of

14 memory-intensive benchmarks in the SPEC2006 suite

by 47.6% compared to no prefetching, by 18.7% compared

to the state-of-the-art Feedback Directed Prefetching, and

by 1.4% compared to the Access Map Pattern Matching

Prefetcher, which has a considerably larger storage and

logic requirement compared to Sandbox Prefetching.

2 Background

Hardware prefetchers for regular data access patterns

fall into two broad categories: conservative, confirmation-

based prefetchers (such as a stream prefetcher), and aggres-

sive, immediate prefetchers (such as a next-line prefetcher).

These two varieties of prefetchers have generally opposite

goals and methods, but Sandbox Prefetching combines at-

tributes of both.

2.1 Confirmation-Based Prefetchers

A confirmation-based prefetcher is one that performs a

prefetch only after it has built up some confidence that the

prefetch will be useful. A stream prefetcher is a good ex-

ample of a confirmation-based prefetcher. When a cache

line address A is seen for the first time, no prefetches are

performed at this time, but the stream prefetcher begins

watching for address A+1. Even when A+1 is seen, still no

prefetches are made, because there is not yet enough evi-

dence that this is a true stream. Only after A+2 is also seen,

and the stream has been fully “confirmed” will A+3 (and

perhaps further cache lines) finally be prefetched.

Since confirmation prefetchers always wait for some

time before issuing any prefetches, they will always leave

some performance on the table. Even if a stream prefetcher

is perfect at prefetching a long stream in a timely and accu-

rate manner, the fact that it had to confirm the stream before

the first prefetch was issued means that its performance will

always be limited, because it missed out on prefetching the

first three accesses.

Confirmation-based prefetchers have the advantage that

once a pattern has been confirmed, many prefetches can be

issued along that pattern, far ahead of the program’s actual

access stream. This improves performance by avoiding late

prefetches.

Confirmation-based stream prefetchers operate on the

granularity of individual streams. Each address that comes

to the prefetcher is considered to be either part of an ex-

isting stream, or not a part of any known stream, in which

case a new stream will be allocated for it. Once a stream

has been confirmed, prefetches may be made along it, but

each stream must be confirmed independently of all other

streams. Furthermore, a new stream will have to be allo-

cated and confirmed whenever an access stream reaches a

virtual page boundary, because the next physical page will

not yet be known.

2.2 Immediate Prefetchers

An immediate prefetcher is one that generates a prefetch

address and performs a prefetch as soon as it is given an in-

put reference address. The most basic and common of these

types of prefetchers is the next-line prefetcher. Every time

the next-line prefetcher is given the address of a cache line

A, it will immediately prefetch the cache line A+1. The only

requirement for the next-line prefetcher to prefetch address

A+1 is for it to see address A. No additional confirmation or

input is required.

Immediate prefetchers have the disadvantage that they

have a higher probability of being inaccurate, compared

to confirmation-based prefetchers. Also, with immediate

prefetchers, there is no notion of prefetching “ahead” of a

stream of accesses, because an immediate prefetcher takes

only a single action each time it is invoked.

Immediate prefetchers have the advantage that they can

prefetch patterns which a confirmation-based prefetcher

cannot prefetch, because no confirmable pattern exists. For

example, consider a linked list of data structures that are

exactly the size of two cache lines. A confirmation-based

prefetcher would consider the first cache line of each of

these linked list nodes to be the beginning of a new pat-

tern, and accessing the second cache line would help build

confidence in this pattern, but the third sequential access

would never come, because the linked list would jump

somewhere else in memory. On the other hand, because im-

mediate prefetchers work on the granularity of individual

cache lines, and not streams, a next-line prefetcher would

be able to perfectly prefetch the second cache line of these

linked list nodes.



3 Related Work

There are numerous studies that have proposed novel

prefetching algorithms [13, 3, 15, 19, 7, 20, 14, 5, 18,

10, 11, 22, 6, 9, 23, 2, 1, 17, 16]. Initial research on

prefetching relied on the fact that many applications ex-

hibit a high degree of spatial locality. As such, many studies

showed these applications can benefit from sequential and

stride prefetching [6, 9]. However, applications that lack

spatial locality receive very little benefit from sequential

prefetching. Therefore, more complex prefetching propos-

als such as Markov-based prefetchers [14], and prefetchers

for pointer chasing applications [7, 20], have also been pro-

posed. While we cannot cover all prefetching related re-

search work, we summarize prior art that closely relates to

our Sandbox Prefetching technique.

There have been a few studies that dynamically adapt

the aggressiveness of prefetchers. Dahlgren et al. proposed

adaptive sequential prefetching for multiprocessors [5].

Their proposal dynamically modulated prefetcher distance

by tracking the usefulness of prefetches. If the prefetches

are useful, the prefetch distance is increased, otherwise it is

decreased. Jiminez et al. present a real life dynamic imple-

mentation of a prefetcher in the POWER7 processor [13].

The POWER7 processor supports a number of prefetcher

configurations and prefetch distances (seven in all). Their

approach exposes to the operating system software the dif-

ferent prefetcher configurations using a Configuration Sta-

tus Register (CSR) on a per-core basis. The operating sys-

tem/software time samples the performance of all prefetch

configurations and chooses the best prefetch setting for the

given core and runs it for several time quanta. In contrast to

this work, which uses software to evaluate and program the

hardware prefetcher, our proposed scheme is a hardware-

only solution.

In this work, we compare Sandbox Prefetching to Feed-

back Directed Prefetching (FDP) [21] and Address Map

Pattern Matching Prefetching (AMPM) [12]. We now de-

scribe both of these techniques in some detail.

3.1 Feedback Directed Prefetching

FDP is an improvement on a conventional stream

prefetcher, which takes into account the accuracy and time-

liness of the prefetcher, as well as the cache pollution gen-

erated by the prefetcher, to dynamically vary how aggres-

sively the prefetcher operates.

FDP works by maintaining a structure that tracks mul-

tiple different access streams. The FDP mechanism is in-

voked in the event of an L2 cache miss (which was the last

level cache miss in the FDP work). When a new stream

is accessed for the first time, a new entry in the tracking

structure is allocated. The stream then trains on the next

two cache misses that fall within +/-16 cache blocks of the

initial miss in order to determine the direction, whether pos-

itive or negative, that the stream is heading in.

After a stream and its direction are confirmed, the stream

tracker enters monitor and request mode. The tracker mon-

itors a region of memory, between a start and end pointer,

and whenever there is an access to that region, one or more

prefetches are issued, and the bounds of the monitored re-

gion of memory are advanced in the direction of the stream.

The size of the monitored memory region, and the number

of cache lines which are prefetched with each access, are

determined by the current aggressiveness level.

FDP has five levels of aggressiveness that it can switch

between, given the current behavior of the program. The

least aggressive level monitors a region of 4 cache blocks,

and prefetches a single cache line on each stream access.

The most aggressive level monitors a region of 64 cache

blocks, and prefetches 4 cache lines on each stream access.

3.2 Address Map Pattern Matching

AMPM is the winner of a data prefetching championship

whose only limitations were on the number of bits that

could be used to store prefetcher state (4 KB). As a con-

sequence, AMPM uses complex logic to make the most of

its limited storage budget. The main idea of AMPM is to

track every cache line in large 16 KB regions of memory,

and then to exhaustively determine if any strides can be dis-

covered through the use of pattern matching, and then to

prefetch along those strides.

AMPM tracks address maps for 52 16 KB regions of

memory, which maintain 2 bits of state for each cache

line in the region, corresponding to whether the line has

not been accessed, has been demand accessed, or has been

prefetched. This address map is updated on every L2 access

and prefetch (L2 was the last level of cache in their work).

Also on every L2 access, the address map corresponding

to the current access is retrieved from a fully-associative

array of address maps, and is placed in a large shift regis-

ter to align the map with the current access address. Then

it attempts to match 256 separate patterns with this shifted

address map, each pattern match requiring two compares to

discover series of strided accesses centered around the cur-

rent access. This generates a list of candidate prefetches,

and a number of these are prefetched according to a dy-

namically changing prefetch degree, and in the order of the

smallest magnitude offset to the largest.

4 Sandbox Prefetching

Sandbox Prefetching (SBP) represents another class of

prefetcher, and combines the ideas of global confirmation

with immediate action to aggressively, and safely, per-

form prefetches. All of our discussion and evaluations are

made in the context of a two-level cache heirharchy, and

prefetches happen exclusively from memory to L2.

4.1 Overview

SBP operates on the principle of validating the accuracy

of aggressive, immediate offset prefetchers in a safe, sand-



Figure 1. Sandbox Prefetching’s place in the
memory hierarchy.

boxed environment, where neither the real cache nor mem-

ory bandwidth are disturbed, and then deploying them in

the real memory hierarchy only if they prove that they can

accurately prefetch useful data. A set of candidate prefetch-

ers, each corresponding to a specific cache line offset, are

constantly evaluated and re-evaluated for accuracy, and the

most accurate of them are allowed to issue real prefetches

to main memory.

Immediate prefetchers have one single prefetch action,

and they perform this action in all situations they are used.

A next-line prefetcher will always fetch the plus-one cache

line, regardless of the input it receives. It is the same with

the candidate offset prefetchers. Each one of them will per-

form a prefetch with a specific offset from the current input

cache line address. Prefetcher accuracy is a concern, and

we therefore cannot allow all candidate prefetchers to issue

prefetches all the time.

Candidates are evaluated by simulating their prefetch ac-

tion and measuring the simulated effect. This is done by

adding prefetch addresses into a sandbox, rather than issu-

ing real prefetches to main memory. The sandbox is a struc-

ture which implements a set and keeps track of addresses

which have been added to it. Subsequent cache accesses test

the sandbox to see if their address can be found there. If the

address is found there, then the current candidate prefetcher

could have accurately prefetched this cache line, and that

candidate’s accuracy score is increased. The accuracy score

is used to tell which, if any, of the candidate prefetchers has

qualified to issue real prefetches in the real memory hier-

archy. If the address is not found there, then that means

the current candidate prefetcher could not have accurately

prefetched this line.

Candidate prefetchers are not “confirmed” in the con-

text of a single access stream, as in a stream prefetcher, but

rather in the context of all memory access patterns present

Figure 2. Sandbox Prefetching acts on every
L2 access.

in the currently executing program. We do not test if a

particular offset prefetcher, which prefetches offset O from

the current cache line address, is accurate for only a single

stream, but we test to see if for every access A, that there is

a subsequent access to A+O. If the pattern holds true for a

large enough number of cache accesses, then the candidate

prefetcher is turned on in the real memory hierarchy.

Each candidate is evaluated for a fixed number of L2 ac-

cesses, and then the contents of the sandbox are reset, and

the next candidate is evaluated.

4.2 The Sandbox

The sandbox of Sandbox Prefetching is implemented as

a Bloom filter[16]. Each prefetch address generated by the

current candidate prefetcher is added to the sandbox Bloom

filter, and each time there is a cache access, the Bloom fil-

ter is tested to see if the cache line address is contained

in it. The sandbox can be thought of as tracking an un-

ordered history of all prefetch addresses the current candi-

date prefetcher has generated.

Because of the probabilities governing Bloom filters, the

size of the Bloom filter is directly related to howmany items

can be added to it before the false positive rate rises above

a desirable level. Because each candidate prefetcher gener-

ates only a single prefetch address, we will add a number of

items to the Bloom filter equal to the number of L2 accesses

in an evaluation period. We experimentally determined that

an evaluation period of 256 L2 accesses is optimal for the

tested workloads. We chose the size of the Bloom filter to

2048 bits (256 bytes), which for 256 item insertions gives

us a maximum expected false positive rate of approximately

1%.

There is only one sandbox per core, and the candidate

prefetchers are evaluated one at a time, in a time multi-

plexed fashion, with the sandbox being reset in between

each evaluation. This means there is no opportunity for

cross-contamination between mutiple candidate prefetchers

sharing a sandbox.



4.3 Candidate Evaluation

Sandbox Prefetching maintains a set of 16 candidate

prefetchers, which are evaluated in round-robin fashion.

Initially this set of prefetchers is for offsets -8 to -1, and +1

to +8. At the beginning of an evaluation period, the sand-

box, the L2 access counter, and the prefetch accuracy score

are all reset, along with other counters which track period

cache reads, writes, and prefetches, which are used to ap-

proximate bandwidth usage.

Each time the L2 cache is accessed, the cache line ad-

dress is used to check the sandbox to see if this line would

have been prefetched by the current candidate prefetcher.

If it is a hit, then the prefetch accuracy score is incre-

mented, otherwise, nothing happens. After this, the can-

didate prefetcher generates a prefetch address, based on the

reference cache line address and its own prefetch offset, and

adds this address to the sandbox. Finally, the counter that

tracks the number of L2 accesses this period is incremented.

Once this number reaches 256, the evaluation period is over

and the sandbox and other counters are reset, and the evalu-

ation of the next candidate prefetcher begins.

After a complete round of evaluating every candidate

prefetcher is over, the bottom 4 prefetchers with the lowest

prefetch accuracy score are cycled out, and 4 more offset

prefetchers that have not been recently evaluated from the

range -16 to +16 are cycled in.

4.4 Prefetch Action

As soon as a candidate prefetcher has finished its evalu-

ation, it may be used to issue real prefetches, if its accuracy

score is high enough. In addition to all of the candidate

evaluation that is done, each L2 access may result in one

or more prefetches to be issued to main memory. We con-

trol the number of prefetches that are issued by estimating

the amount of bandwidth each core has consumed during

its last evaluation period, and then using that to estimate

the amount of unused bandwidth available to be used for

additional prefetches. Each core in a multi-core setup gets

a prefetch degree budget proportional to the number of L2

accesses it performs. This prefetch degree is capped at a

minimum of one prefetch per prefetch direction (positive

and negative), per core, per L2 access, and at a maximum

of eight. The prefetch degree is recalculated at the end of

each evaluation period.

Evaluated prefetchers with lower numbered offsets are

given preference to issue their prefetches first (and there-

fore use up some of the prefetch degree budget first). There

is an accuracy score cutoff point, below which an evalu-

ated prefetcher will not be allowed to issue any prefetches.

Prefetches continue until a number of prefetches equal to

the prefetch degree has been issued, and then is repeated

for the negative offset prefetchers. The actual offsets of

the evaluated prefetchers can change as the less accurate

candidate prefetchers are cycled out, so there will need to

Sandbox Size 2048 bits

Evaluation Period 256 L2 accesses

Total PF Candidates 32

Candidate Offset Ranges -16 to +16, excluding 0,

16 evaluated per round,

then worst 4 cycled out

Candidate Score Storage 16 10-bit counters

Prefetch Accuracy Cutoffs 256 (1 PF)

to Issue Multiple Prefetches 512 (2 PFs)

Per L2 Access 768 (3 PFs)

Bandwidth Estimation Counters Read Counter

Write Counter

Prefetch Counter

Table 1. Sandbox Prefetching parameters and
counters.

be some hardware logic to decide the order that evaluated

prefetchers will be considered to issue their prefetches. The

specific values of the cutoff points will be discussed in the

next subsection.

It is important to keep in mind that there is no additional

confirmation before prefetches are issued at this stage. All

of the confirmation has already been done globally in the

sandbox during the offset prefetcher’s evaluation.

4.5 Detecting Streams

So far we have focused on the sandbox’s ability to de-

tect the accuracy of offset prefetches, but it can also be used

to detect strided access streams. When the sandbox is be-

ing probed to see if the current L2 access cache line ad-

dress could have been prefetched by the current candidate

prefetcher, we can also act as though this access is the latest

in a strided stream of accesses (where the stride is equal to

the offset of the current candidate prefetcher), and test to

see if earlier addresses in this strided stream are also found

in the sandbox.

For example, if the current candidate prefetcher’s offset

is +3, whenever we check the sandbox to see if the current

cache line address A is found in it, we can also check for A-

3, A-6, A-9, and so on. If those addresses are also found in

the sandbox, then that means that the program is accessing

a stream with stride +3. When we were only considering

individual offsets that could be prefetched, there was no op-

portunity to prefetch “ahead,” because there was no stream

to follow. But now that we can accurately detect strided

streams in the access pattern, it makes sense that each can-

didate prefetcher be allowed to prefetch more than a single

line.

We treat the detection of earlier members of a stream in

the sandbox the same as we treat the detection of the cur-

rent access address, by incrementing the sandbox accuracy

score for each line found. We probe the sandbox for the cur-

rent address and the previous three members of the stream,

so it’s possible that on each L2 access, the prefetch accu-



ISA UltraSPARC III ISA

CPU configuration 1-4 cores, 3.2 GHz

Core parameters 4-wide out-of-order

128-entry ROB

L1 I-cache 32KB 8-way, private, 4 cycle

L1 D-cache 32KB 8-way, private, 4 cycle

L2 Cache 2-8 MB shared, 12 cycle

Cache line size 64 Bytes

DRAM model based on USIMM, 12.8 GB/s

Table 2. Simulator parameters.

racy score may be incremented by up to four. Since there

are 256 L2 accesses in an evaluation period, that means the

maximum prefetch accuracy score is 1024.

When it is time to issue real prefetches, and an evaluated

prefetcher has been found that is not below the accuracy

cutoff, then the prefetch accuracy score is examined to see

how many prefetches will be issued along the stream that

offset prefetcher represents. If the score is greater than 512,

then two prefetches along the stream will be done. If the

score is greater than 768, then 3 prefetches along the stream

will be done. The accuracy cutoff is 256, so if the accu-

racy score is above this number, but below 512, then only a

single prefetch will be done.

4.6 Putting It All Together

We now review the Sandbox Prefetching technique with

all its parts as one whole.

There is a set of candidate prefetchers which are evalu-

ated by simulating their prefetch action by adding prefetch

addresses to a sandbox Bloom filter, rather than issuing

real prefetches, and by testing subsequent cache access ad-

dresses to see if they are part of a strided stream. After an

entire round of testing candidate prefetchers, the bottom 4

are cycled out to test a broader range of offsets/strides. Each

cache access can initiate a number of prefetches, which is

based on the amount of available bandwidth. Prefetches are

done according to the evalauted prefetchers’ prefetch accu-

racy score, and higher scores mean that more prefetches are

issued further down that prefetcher’s stream.

5 Methodology

5.1 System Parameters

We evaluate Sandbox Prefetching using the Wind River

Simics full system simulator [2], which has been augmented

to precisely model a DRAM main memory system by inte-

grating the USIMM DRAM simulator [4]. Each proces-

sor core is a 4-wide out-of-order core, using Simics’s ooo-

micro-arch module, with a 128-entry reorder buffer. The

parameters of our simulation infrastructure can be seen in

Table 2.

We perform both single- and quad-core simulations.

Both configurations use 32 KB instruction and data L1

caches, but the single-core simulations use only 2 MB of L2

Single Core Workloads

401.bzip2, 410.bwaves, 429.mcf, 433.milc,

434.zeusmp, 437.leslie3d, 450.soplex,

459.GemsFDTD, 462.libquantum, 470.lbm,

471.omnetpp, 473.astar, 482.sphinx3,

483.xalancbmk

Multi Programmed Workloads

mix1 GemsFDTD, lbm, leslie3d, libquantum

mix2 astar, lbm, libquantum, milc

mix3 astar, milc, soplex, xalancbmk

CloudSuite 1.0 Workloads

Data Serving, MapReduce, Media Streaming

SAT Solver, Web Frontend, Web Search

Table 3. Evaluation workloads.

cache, while the quad-core simulations use a shared 8 MB

of L2 cache (the same ratio of 2 MB per core). The L2

cache is the last level of cache, and is inclusive of the L1

caches. The L1 caches use LRU for the cache replacement

policy, while the L2 cache uses the PACMan cache replace-

ment policy [23]. Prefetches for all of the tested prefetch

methods are performed only at the L2 level. Each core has

its own independent prefetching unit, and can have up to 32

simultaneously outstanding prefetches. We do not model an

L1 prefetcher of any kind.

Our main memory system is modeled as a single DDR3-

1600 memory channel, with up to 12.8 GB/s of memory

bandwidth. All DRAM timings, bus and bank contentions,

and bandwidth limitations are strictly enforced. The DRAM

scheduler is based on first come, first serve, and prioritizes

demand read requests over prefetch read requests.

We compare Sandbox Prefetching to two state-of-the-art

prefetchers, which were discussed in Section 3, Feedback

Directed Prefetching, and Address Map Pattern Matching,

as well as a baseline which performs no prefetching. Both

FDP and AMPM have been configured according to their

respective cited papers.

5.2 Workloads

We evaluate the Sandbox Prefetching method by testing

it with a variety of workloads from the SPEC CPU 2006

suite [1]. We selected workloads that exhibit a non-trivial

rate of last level cache misses per instruction. Some of these

workloads are amenable to regular prefetching, such as lbm,

libquantum, andmilc. Some of these workloads do not work

well with prefetching, such as mcf, and omnetpp, and are

included to show that Sandbox Prefetching does not hurt the

performance of applications that are not prefetch-friendly.

The list of evaluated applications can be found in Table 3.

We determined the region of program execution to use

for our simulations by profiling the last level cache miss

rates of each application using our no-prefetching baseline,

and then we found a contiguous 500 million instruction re-

gion which is representative of overall program execution,



including program phase changes. Once finding these sim-

ulation starting points, each experiment was conducted by

first warming up the caches for 50 million instructions, and

then collecting performance statistics for another 500 mil-

lion instructions.

We also include results for three mix workloads. These

mixes are selected from our single threaded workloads. We

chose combinations of applications that would stress the

memory bandwidth of the system to different degrees. Our

mix1 workload is comprised of four applications that are all

bandwidth intensive. The mix2 workload is comprised of

two bandwidth intensive applications, and two applications

of medium bandwidth intensity. Finally, the mix3 is com-

prised of four medium bandwidth intensity applications.

Finally, In our sensitivity analysis, Section 6.5, we eval-

uate 6 workloads from CloudSuite 1.0 [8]. For each Cloud-

Suite application, we began simulation at the beginning of

the region of interest. All CloudSuite experiments were

conducted using the same 4-core configuration as the SPEC

mixes above.

6 Evaluation

6.1 Prefetcher Storage and Logic Require-
ments

SBP is configured to use a candidate evaluation period

of 256 L2 accesses, requiring a sandbox Bloom filter of

size 256 B (2048 bits). In addition to this, SBP requires

storage to track 16 candidate prefetchers, each requiring 10

bits for accuracy score storage and another 5 bits to store

its prefetch offset, and 10 more bytes for various counters.

SBP’s total storage requirement is 296 B per core. Finally,

SBP requires logic that can update counters, update and

query the Bloom filter, choose which of the 16 evaluated

prefetchers to use, and calculate the prefetch degree, but all

of this logic is off the critical path of performance (meaning

it is not used in the calculation of prefetch addresses ev-

ery time the L2 cache is accessed). The only performance-

critical logic is used to generate prefetch addresses based

on a reference address, and a set of offsets which have been

predetermined to have high evaluation scores, which is not

unusual for a prefetching mechanism.

FDP is configured to use 2.5 KB of storage per

core, which includes bits in the cache tag array to mark

prefetched lines, a 4096-bit Bloom filter to track cache pol-

lution (which by itself requires more storage than all of

SBP), and more. This quoted storage does not include

their baseline 64-entry stream tracking structures, which

would add another 600 B. In total, FDP uses 3.1 KB for

its prefetching structures, and requires logic which can de-

tect if an address is within an existing stream, allocate new

streams, add and remove items from a Bloom filter, and cal-

culate the dynamic settings of the prefetcher based on feed-

back mechanisms. As with SBP, the more complicated logi-

cal components are off the critical path of performance, and

Sandbox Prefetching 296 B

Feedback Directed Prefetching 3.1 KB

Access Map Pattern Matching 4 KB

Table 4. Prefetcher Storage Overheads

the only performance-critical logic calculates the prefetch

addresses based on a reference address, the prefetch direc-

tion, and prefetch degree.

AMPM is configured to use 4 KB of storage per core,

most of which is used by the memory access map table,

which tracks the use status of every cache line in 850 KB

worth of address space using 2-bit counters. In addition to

this 4 KB of storage overhead, AMPM requires the ability

to pattern match up to 256 stride patterns (up to 512 com-

parisons of 2-bit numbers) to find prefetch candidates on

each L2 access. This would require significantly more logic

to do than either FDP or SBP require, and unlike SBP and

FDP, AMPM’s most complicated logical components are on

the critical path of performance, and must be invoked every

time a prefetch address is generated.

SBP uses considerably less storage than either FDP or

AMPM, and its logic requirement is also considerably lower

than AMPM, both on and off the critical path of perfor-

mance.

6.2 Performance

6.2.1 Single Core

Figure 3 shows the performance, measured in IPC nor-

malized to the performance of the no-prefetching baseline

(No PF) of our four test configurations. In the single-

threaded workloads where AMPM sees its largest perfor-

mance improvements over No PF, SBP is able to consis-

tently achieve even higher performance. SBP improves

upon the performance of AMPM by the greatest amount

in GemsFDTD (5.0%), lbm (5.1%), leslie3d (6.8%), milc

(7.2%), and sphinx3 (4.6%). On the other hand, AMPM

is able to achieve 3.8% higher performance than SBP in

bwaves. Overall, SBP’s average improvement compared to

AMPM across all single-threaded workloads is 2.4%. SBP

accomplishes this using only a small fraction of the stor-

age overhead and number of comparison operations per L2

access that AMPM uses to achieve its result.

Compared to FDP, SBP improves performance across

single threaded workloads by an average of 18.7%, with a

maximum of 68.8% improvement in the lbm workload.

6.2.2 Multi-Core

For the single-programmed workloads, SBP has an entire

12.8 GB/s memory channel to itself, and is able to aggres-

sively prefetch without worrying about bandwidth limita-

tions. For the multi-core situation, we modified SBP’s pa-

rameters slightly to make it more conservative in prefetch-

ing, and conserve bandwidth. This was accomplished by



Figure 3. Performance normalized to the no-prefetching baseline.

increasing the accuracy cutoff limit by 50%, meaning that

evaluated prefetchers would need more hits in the sand-

box Bloom filter before they could qualify to issue real

prefetches. This could be a setup-time configuration option

which could be set before loading all cores with applications

with high bandwidth requirements.

In multi-programmed mix workloads, SBP is able to im-

prove upon the performance of AMPM by 3.9% in mix1,

but has lower performance in mix2, and mix3, 6.6% and

6.5% lower, respectively. This performance loss is due to

SBP’s prefetching still being too aggressive, even after set-

ting a higher accuracy cutoff limit. However, compared to

FDP, SBP’s performance is strictly higher, averaging 19.2%

better, with a maximum of 26.0% improvement in mix3.

Again, with lower storage and logic requirements, SBP is

able to nearly meet or beat AMPM, and is strictly better

than FDP.

6.3 DRAM Channel Usage

Prefetching always increases memory bandwidth usage.

If the prefetching technique is effective at reducing cache

misses, it will increase IPC and therefore the rate at which

read requests are sent to DRAM. Even if the prefetching

technique is not effective at accurately predicting what data

will be used by the processor next, it will still increase band-

width, this time by sending superfluous prefetch requests to

the DRAM.

Figure 4 shows how much bandwidth was used by each

test configuration for each workload. SBP usually uses the

most bandwidth of any tested prefetch technique. This is

often because SBP has the highest performance, but in cases

like bwaves or two of the mix workloads, SBP uses the most

bandwidth, but does not have the highest performance.

Figure 4. Bandwidth in MB/s. Bandwidth in-
creases as prefetchers become more aggres-
sive, regardless of whether the prefetches
are fruitful or not.

Memory bandwidth is a measure of data being trans-

ferred per unit time, such as megabytes per second, and is

separate from the measure of how much data is transferred

across the main memory bus per instruction executed. Fig-

ure 5 shows the relative number of Bus Transactions per

thousand instructions (BPKI) that were used during each

benchmark run, normalized to the BPKI of the no-prefetch

baseline. Reads, writes, and prefetches all count toward the

number of bus transactions that a benchmark configuration

uses.

In this figure, a number close to 1.0 means that the

prefetcher did not issue many superfluous prefetches, and



Figure 6. The number of L2 cache misses and late prefetch accesses per thousand instructions. For
each workload, the columns are ordered No PF, FDP, AMPM, and SBP.

Figure 5. The number of bus transactions per
thousand instructions. Bus transactions in-
clude DRAM reads, writes, and prefetches.

that most of the data that was prefetched was consumed

by the program. A number much greater than 1.0 signifies

that the system configuration generated many unnecessary

prefetches, at least wasting memory bandwidth, but possi-

bly also polluting the cache and requiring useful data to be

re-fetched from main memory.

Three examples from these two figures highlight impor-

tant prefetcher behaviors. First, mcf does not see an in-

crease in BPKI, and neither does it see an increase in band-

width. This is because no prefetcher issues very many

prefetches (successful or otherwise) for this workload. Sec-

ond, libquantum sees a large increase in bandwidth usage,

but no increase in BPKI. This is because the prefetchers

Figure 7. The percent reduction in last
level cache misses, compared to the no-
prefetching baseline.

do large amounts of prefetches, which are almost all fruit-

ful, and would have been fetched by the no-prefetch base-

line anyway. Finally, xalancbmk does not see a signif-

icant improvement in performance from prefetching, but

both AMPM and SBP consume extra memory bandwidth,

and greatly increase BPKI. This is because most of the

prefetches issued by these prefetchers are unfruitful and

pollute the cache, and the extra memory bandwidth usage

is just wasted.

6.4 L2 Misses and Prefetcher Coverage

The primary goal of prefetching is to reduce average data

access latency by placing data into the cache that otherwise

would not be there yet. This is clearly observable when



looking at the last level cache miss rates, as in Figure 6.

This figure shows both the L2 cache miss rate per thousand

instructions (MPKI), as well as how many late prefetches

were seen per thousand instructions.

A late prefetch is defined as a prefetch that has already

been issued to the main memory, but before the prefetch

data was returned from main memory, the program issued

a load for that data. We do not differentiate in this figure

between late prefetches that hide only a small amount of the

cache miss latency, or late prefetches that hide the majority

of the cache miss latency.

SBP sees more late prefetches than either FDP or

AMPM, especially for the multi-core workloads. In the

single core workloads, even if we were to consider a late

prefetch as no better than an outright cache miss, then SBP

would still have fewer cache misses than either FDP or

AMPM.

Figure 7 shows the prefetch coverage rates for each

prefetch technique for each workload. Prefetch coverage is

defined as the percentage of cache misses that were present

in the no-prefetching baseline that the prefetching technique

is able to anticipate and prefetch.

SBP generally has the highest prefetch coverage rate.

Looking at the bandwidth usage and BPKI statistics, it

might not be surprising that the prefetcher that aggressively

uses the most bandwidth and bus transactions also has the

highest prefetch coverage, but it is important to note that

FDP and AMPM could have used more bandwidth, but their

prefetching mechanisms did not identify sufficient opportu-

nities to issue additional useful prefetches, while SBP did.

Prefetch coverage is low for SBP in the bzip2 bench-

mark. Looking at the IPC, bandwidth, and BPKI metrics

shows that SBP was not effective at finding many oppor-

tunities for useful prefetches in this workload. Prefetch

coverage is also low for SBP in omnetpp. Looking at the

other metrics in this case shows that many prefetches are be-

ing issued, they just aren’t very effective at covering cache

misses.

6.5 Sensitivity Analysis

The above results were gathered using the system pa-

rameters described in Section 5.1. We now show results for

varying the candidate prefetch evaluation period for SBP,

and the last level cache size, and for CloudSuite 1.0 work-

loads.

6.5.1 Candidate Prefetcher Evaluation Period

We tested Sandbox Prefetching using several different dura-

tions for the candidate prefetcher evaluation period, as seen

in Figure 8. As we varied the evaluation period duration, we

also changed the size of the Bloom filter (and therefore stor-

age overhead requirement), to maintain the same expected

false positive rate (1%).

Figure 8. Effect of candidate prefetcher eval-
uation period length on IPC and BPKI.

Starting from a duration of 32 L2 accesses, as you in-

crease the candidate prefetcher evaluation period, perfor-

mance increases because each candidate prefetcher under

evaluation has a longer period of time in which to build up

its score, because each simulated prefetch that is added to

the sandbox has a longer time in which it might be later

accessed. Shorter durations might miss out on some accu-

rate prefetchers because they end the evaluation and move

on to the next candidate too quickly, before the simulated

prefetches can be accessed and the candidate prefetcher can

earn a high accuracy score. However, if the evaluation pe-

riod is too long, then too many prefetchers will rise above

the accuracy score cutoff, and there will be too much band-

width use and cache pollution, and performance suffers.

The maximum for IPC is seen when the evaluation pe-

riod is set to 256. Any more or less than this and perfor-

mance degrades.

6.5.2 L2 cache size

For our evaluations we have so far used an industry-typical

2 MB of last level cache per core, and now we investigate

what happens if we vary the amount of last level cache. We

show results for zeusmp, which in the baseline 2MB config-

uration had SBP outperforming AMPM, and bwaves, which

in the baseline 2 MB configuration had AMPM outperform-

ing SBP. However, our simulation duration for this exper-

iment was lower than we used for the other performance

results (50 million instructions versus 500 million instruc-

tions, both after a 50 million instruction warmup), and this

simulation window is focused in a region of the highest L2

cache misses for the No PF baseline for these workloads.

We tested for cache sizes ranging from 256 KB to 8 MB

(all for a single core), as seen in Figure 9. The baseline no-

prefetching configuration sees very little performance ben-



(a) zeusmp IPC (b) zeusmp BPKI

(c) bwaves IPC (d) bwaves BPKI

Figure 9. Effect on IPC and BPKI caused by varying the last level cache size.

efit as cache size increases for zeusmp, but its performance

nearly doubles for bwaves when the cache size is increased

from 512 KB to 1 MB. For both zeusmp and bwaves, when

large 4 MB or 8 MB caches are used, SBP and AMPM per-

formance and BPKI are both very similar. For lower cache

sizes the differences between the behaviors of AMPM and

SBP become more apparent.

In zeusmp, the performance of AMPM gradually in-

creases each time the cache capacity is doubled. SBP, on

the other hand, realizes almost all of its performance poten-

tial with only 512 KB of cache. AMPM is reliant on high

cache capacity to achieve high performance, while SBP is

able to deliver the same performance using a 512 KB cache

that AMPM can only deliver when using a 4 MB cache.

In addition to having much lower performance, AMPM

is also very poorly behaved in zeusmp when using small

caches. While AMPM has higher BPKI at every cache size,

it is not until cache size reaches 2 MB that its BPKI comes

in line with the other prefetch techniques. SBP also has

high BPKI when using a 256 KB cache in zeusmp, but this

is at least coupled with the highest performance seen for

that cache size.

In bwaves, AMPM is even worse behaved for small

caches than it was in zeusmp. Performance for AMPM

is lower than the no-prefetching baseline for 256 KB and

512 KB caches, and BPKI is nearly tripled. Using a 1MB or

2 MB cache yields nearly identical results for AMPM, and

its performance doesn’t increase again until using a 4 MB

cache, where it again plateaus. On the other hand, SBP is

able to deliver the same performance using a 1 MB cache

that AMPM can only deliver when using a 4 MB cache.

6.5.3 CloudSuite 1.0

Prefetching was not effective for some of the six tested

CloudSuite workloads. Of these workloads, Media Stream-

ing sees the largest benefit from prefetching, with AMPM

improving performance by 28.6%, and SBP improving per-

formance by only 22.4%, compared to No PF. Two other

workloads, MapReduce and SAT Solver, see no benefit

from AMPM, but SBP improves their performance by 2.4%

and 4.3%, respectively. The average performance improve-

ment across the six tested CloudSuite workloads is 6.9% for

FDP, 8.3% for AMPM, and 8.0% for SBP, compared to the

No PF baseline.

6.6 Performance Review

We will now summarize the results from this section.

SBP uses only 9.5% of the storage overhead of FDP, and



only 7.2% of the storage overhead of AMPM, and it also

has a much lower logical complexity requirement compared

to AMPM. SBP improves upon the performance of FDP

by an average of 18.7% in both single and multi-threaded

workloads. Although having much lower storage and logi-

cal overheads, SBP improves on the performance of AMPM

by 2.4% in our evaluated single-threaded workloads, and

by 1.4% across all evaluated workloads. We also found that

SBP is able to achieve high performance when using a much

smaller cache than AMPM requires to achieve the same per-

formance.

7 Conclusions

Modern high performance processors employ a variety

of hardware prefetching techniques to mitigate the impact

of long memory latencies. We have proposed Sandbox

Prefetching, a new mechanism to evaluate the effectiveness

of candidate immediate prefetchers in the global context of

every memory access a program uses, before they are de-

ployed in the real memory hierarchy. This evaluation is

done by simulating prefetches in a Bloom filter-based Sand-

box, which avoids wasting real cache space and memory

bandwidth on prefetches that have not yet been determined

to likely be effective. This mechanism can detect strides in

the memory access pattern, as well as fixed offsets which

can be accurately prefetched.

Sandbox Prefetching improves performance across a

set of memory-intensive SPEC CPU 2006 benchmarks by

47.6% compared to not using any prefetching, and by

18.7% compared to the Feedback Directed Prefetching

technique. Performance is also improved by 1.4% com-

pared to the Access Map Pattern Matching Prefetcher, while

using considerably less logic or storage overheads.

Acknowledgments

We thank the anonymous reviewers for their many useful

suggestions. This work was supported in part by NSF grant

CNS-1302663.

References

[1] Standard Performance Evaluation Corporation CPU2006

Benchmark Suite. http://www.spec.org/

cpu2006/.

[2] Wind River Simics Full System Simulator. http://www.

windriver.com/products/simics/.

[3] J. Baer and T. Chen. An Effective On-Chip Preloading

Scheme to Reduce Data Access Penalty. In Proceedings of

Supercomputing, 1991.

[4] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugs-

ley, A. Udipi, A. Shafiee, K. Sudan, M. Awasthi, and

Z. Chishti. USIMM: the Utah SImulated Memory Module.

Technical report, University of Utah, 2012. UUCS-12-002.

[5] F. Dahlgren, M. Dubois, and P. Stenstrom. Sequential Hard-

ware Prefetching in Shared-Memory Multiprocessors. IEEE

Transactions on Parallel and Distributed Systems, 1995.

[6] F. Dahlgren and P. Stenstrom. Evaluation of Hardware-

Based Stride and Sequential Prefetching in Shared-Memory

Multiprocessors. IEEE Transactions on Parallel and Dis-

tributed Systems, 7(4):385–395, April 1999.

[7] E. Ebrahimi, O. Mutlu, and Y. Patt. Techniques for

Bandwidth-Efficient Prefetching of Linked Data Structures

in Hybrid Prefetching Systems. In Proceedings of HPCA,

2009.

[8] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Al-

isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki,

and B. Falsafi. Clearing the Clouds: A Study of Emerging

Scale-out Workloads on Modern Hardware. In Proceedings

of ASPLOS, 2012.

[9] J. Fu, J. Patel, and B. Janssens. Stride Directed Prefetching

in Scalar Processors. In Proceedings of MICRO-25, pages

102–110, December 1992.

[10] I. Hur and C. Lin. Memory Prefetching Using Adaptive

Stream Detection. In Proceedings of MICRO, 2006.

[11] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and

S. Abraham. Effective Stream-Based and Execution-Based

Data Prefetching. In Proceedings of ICS, 2004.

[12] Y. Ishii, M. Inaba, and K. Hiraki. Access Map Pattern

Matching for High Performance Data Cache Prefetch. The

Journal of Instruction-Level Parallelism, 13, January 2011.

[13] V. Jimenez, R. Gioiosa, F. Cazorla, A. Buyuktosunoglu,

P. Bose, and F. O’Connell. Making Data Prefetch Smarter:

Adaptive Prefetching on POWER7. In Proceedings of

PACT, 2012.

[14] D. Joseph and D. Grunwald. Prefetching Using Markov Pre-

dictors. In Proceedings of ISCA, 1997.

[15] N. Jouppi. Improving Direct-Mapped Cache Performance

by the Addition of a Small Fully-Associative Cache and

Prefetch Buffers. In Proceedings of ISCA-17, pages 364–

373, May 1990.

[16] D. E. Knuth. The Art of Computer Programming: Funda-

mental Algorithms, volume 1. Addison-Wesley, third edi-

tion, 1997.

[17] S. Kumar and C. Wilkerson. Exploiting Spatial Locality in

Data Caches Using Spatial Footprints. In Proceedings of

ISCA, 1998.

[18] K. Nesbit, A. Dhodapkar, and J. Smith. AC/DC: An Adap-

tive Data Cache Prefetcher. In Proceedings of PACT, 2004.

[19] S. Palacharla and R. Kessler. Evaluating Stream Buffers as a

Secondary Cache Replacement. In Proceedings of ISCA-21,

pages 24–33, April 1994.

[20] A. Roth, A. Moshovos, and G. Sohi. Dependence Based

Prefetching for Linked Data Structures. In Proceedings of

ASPLOS VIII, pages 115–126, October 1998.

[21] S. Srinath, O.Mutlu, H. Kim, and Y. Patt. Feedback Directed

Prefetching: Improving the Performance and Bandwidth-

Efficiency of Hardware Prefetchers. In Proceedings of

HPCA, 2007.

[22] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.

POWER4 System Microarchitecture. In IBM Technical

Whitepaper, Oct. 2001.

[23] C.Wu, A. Jaleel, M. Martonosi, S. Steely, and J. Emer. PAC-

Man: Prefetch-Aware Cache Management for High Perfor-

mance Caching. In Proceedings of MICRO-44, 2011.


