
Trace Alignment Algorithms for Offline Workload Analysis
of Heterogeneous Architectures

Muhammet Mustafa Ozdal
Intel Corporation

Hillsboro, OR 97124

mustafa.ozdal@intel.com

Aamer Jaleel
Intel Corporation

Hudson, MA

aamer.jaleel@intel.com

Paolo Narvaez
Intel Corporation

Hudson, MA

paolo.narvaez@intel.com

Steven Burns
Intel Corporation

Hillsboro, OR

steven.m.burns@intel.com

Ganapati Srinivasa
Intel Corporation

Hillsboro, OR

ganapati.srinivasa@intel.com

ABSTRACT

Heterogeneous architectures with single-ISA asymmetric cores have

the potential to improve both the performance and energy efficiency

of software execution by dynamically selecting the most appropriate

core type to run each execution thread. In this paper, we propose a

trace-based methodology to explore power and performance bene-

fits of single-ISA heterogeneous core architectures. The basic idea

is to collect multiple traces by running a workload on different ho-

mogeneous platforms, and to align these traces for offline analysis.

For this, we propose a wavelet-based similarity metric, which cap-

tures both fine-grain and coarse-grain software phases across dif-

ferent traces. Then, we propose a scalable dynamic programming

algorithm to optimize this metric to align the traces. Our experi-

ments show that the runtime and energy values predicted by our of-

fline methodology have good accuracy with respect to the real mea-

surements from a prototype heterogeneous system. The proposed

methodology can enable design space exploration of single-ISA het-

erogeneous multi-core systems using traces from off-the-shelf ho-

mogeneous systems.

1. INTRODUCTION
Single-ISA heterogeneous multi-core architectures have the po-

tential to offer both high performance and low energy consump-

tion by utilizing multiple asymmetric cores. Some commercial

products in this category include Nvidia’s Kal-El [11] and ARM’s

big.LITTLE [4] architectures, which combine high-performance

(“big”) cores with energy efficient (“small”) cores on the same chip.

While compute-intensive software phases can be run on a big (e.g.

out-of-order) core to improve performance, the phases with inher-

ently low instruction-level parallelism (ILP) can be run on a small

(e.g. in-order) core to reduce the overall energy consumption.

The benefits of such heterogeneous architectures depend on the

application characteristics, power-performance metrics, and the core

selection algorithms utilized. It is possible that for certain applica-

tions, one core type is always the best choice, e.g. small cores for

applications with very low ILP in power-restrained settings. How-

ever, in general, a combination of different core types may lead to the

best results. For example, consider an application with nonuniform

execution phases. For the best tradeoff between high performance

and energy efficiency, the application can be assigned to a big core

during performance intensive phases, and vice versa. Obviously, the

scheduling algorithm that determines the core selection during run-

time also affects how much of the potential benefits can be achieved

 0

 0.5

 1

 1.5

 0

 0.5

 1

 1.5

b
ig

 c
o
re

 I
P

C
sm

al
l

co
re

 I
P

C

retired instrs.

Figure 1: A snippet of two traces collected by running workload

gcc (SPEC-INT) on “big” and “small” cores at different times.

The instruction-per-cycle (IPC) values are plotted against the

number of instructions retired. The dashed lines show the ideal

alignment based on visual inspection of the IPC patterns.

in practice.

The benefits of incorporating different core types in a system

need to be studied for the target class of applications during archi-

tecture exploration phases. For this purpose, performance accurate

simulators for different core types can be utilized. However, the

main drawback is that the runtime requirements of the performance

accurate simulators allow analysis of only very short (e.g. 1-10 sec-

onds) snippets of applications. On the other hand, the benefits of

heterogeneous systems are typically observed over longer durations

as the applications go through different execution phases, each of

which can be best suited for a certain core type. Furthermore, the

selection of core type is often dependent on the thermal state of the

system. With typical thermal time constants in the order of minutes,

it can take hours of workload execution time to evaluate the average

performance and energy usage of a heterogeneous platform. This

would take several months (or years) of simulation time with the

state-of-the-art detailed performance simulators.

An alternative approach is to run the workloads to be analyzed on

existing off-the-shelf homogeneous systems and collect traces cor-

654978-1-4799-1071-7/13/$31.00 ©2013 IEEE

 0

 0.5

 1

 1.5

 0

 0.5

 1

 1.5
sm

al
l

co
re

 I
P

C
b
ig

 c
o
re

 I
P

C

retired instrs.

Figure 2: The two traces in Figure 1 are aligned using the al-

gorithms proposed in this paper. The dashed lines show how

the two traces were aligned based on the similarity of the IPC

patterns.

responding to periodic power/performance event counter samples.

These traces can be collected using kernel sampling mechanisms

for each application. For example, assume that we want to analyze

a serial workload W during the architecture exploration phase of

a future heterogeneous system with two core types B (big) and S
(small). For this purpose, one can run W on an off-the-shelf sys-

tem with core type B, and collect a trace TB , which contains the

power/performance characteristics ofB during execution ofW . Af-

terwards, W can be run on another off-the-shelf system with core

type S, and trace TS can be collected in a similar way. Once the

traces TB and TS are available, one can analyze the power and per-

formance of W on a heterogeneous system (with core types B and

S) by simulating a core scheduling policy. This can be done be-

cause the power/performance characteristics of each interval of W
is stored in TB and TS separately. An offline scheduler can assign

each interval of W to a core type based on the information in TB

and TS , and the power/performance of W can be estimated on a

future heterogeneous system.

This method implicitly assumes that traces TB and TS are

aligned in instruction count. In other words, it assumes that instruc-

tion count N for TB is the same as for TS . Only this way, one

can compare and evaluate the power/performance characteristics of

a specific execution interval on coresB and S. However, in practice,

traces TB and TS are never perfectly aligned. The main reason for

this is the presence of background tasks and kernel processes during

the execution of workload W . Due to the non-determinism of these

processes, the number of instructions retired may differ slightly in

different traces. Furthermore, since this error is cumulative, over

time, TB will drift away from TS to the point where the instructions

being executed around instruction count N on TB are unrelated to

the same neighborhood in TS .

Figure 1 illustrates a snippet of two traces collected by running

the gcc workload (from SPEC-INT benchmarks) on two core types.

The first trace is from an Intel Core i7 (“big”) core, while the sec-

ond trace is from a defeatured (“small”) core1. Although the full

traces correspond to hundreds of seconds of execution, this figure

illustrates a snippet of only a few seconds for better visibility. Both

traces were collected with 4ms granularity using hardware counters,

and they were aligned to each other based on the number of instruc-

tions retired (x axis). It is possible to observe the misalignment of

1The defeaturing was done at hardware level to emulate small core
power and performance. See Section 6.2 for details.

the IPC patterns (y-axis) between the two traces. The ideal align-

ment of these snippets is shown with the set of dashed lines in the

figure. This alignment can be inferred by visual inspection of the

traces based on the IPC change patterns. Although such an align-

ment can be done manually for a small snippet, it is too time con-

suming to do this for a trace of size hundreds of times larger.

The objective of this paper is to automate the trace alignment

process to enable offline analysis of execution traces collected from

different cores. The difficulty of this problem is due to the following

reasons:

• The misalignment in the number of retired instructions can

be arbitrary because of the nondeterministic execution of the

background tasks and kernel processes, which cannot be dis-

abled during workload execution. In the example of Figure 1,

the small core trace needs to be shifted towards right for bet-

ter alignment. However, the exact shift value and the direction

can be different at different points in the trace.

• The absolute and the relative IPC values are different when the

same set of instructions are executed on different core types.

In Figure 1, it is possible to observe some resemblance be-

tween the two traces in terms of how the IPC values change

over time. However, the shape of the patterns are still signifi-

cantly different, and automatically capturing the high-level re-

semblance and aligning the traces accordingly is not straight-

forward.

Figure 2 illustrates the result of our proposed algorithms on the

two traces of Figure 1. Observe that the high-level similarity be-

tween the traces is captured almost perfectly. Furthermore, the

traces are aligned in such a way that there is one-to-one correspon-

dence between the intervals in the big and small core traces. Given

such aligned traces, it is possible to compare the power/performance

characteristics of different core types for every sampling interval of

workload W .

The main contributions of this paper can be summarized as fol-

lows:

• For a given trace, we propose a wavelet-based model to de-

fine trace features corresponding to the IPC change patterns of

different granularities. This model helps capture both coarse-

grain and fine-grain software phases.

• Given multiple traces from different types of cores, we pro-

pose a similarity metric that uses the wavelet features defined

for each trace. Intuitively, this metric captures the similarity

between trace entries based on how IPC values change over

time.

• We propose runtime improvements for the dynamic program-

ming based algorithm for sequence matching. The proposed

algorithms can match traces with more than hundred thousand

entries within practical runtimes.

• In our experimental study, we show that the results of the pro-

posed offline methodology correlate well with the real mea-

surements from a heterogeneous system.

The proposed methodology can be used for design space exploration

of heterogeneous multi-core systems by collecting traces from off-

the-shelf homogeneous systems.

The rest of the paper is organized as follows. In Section 2, we

provide a brief summary of the related work. Then, we formulate

the trace alignment problem in Section 3. In Section 4.1, we pro-

pose a wavelet-based model to distinctly identify each trace interval

based on software phases of different granularities. Based on this

model, we define a similarity metric between two different traces in

655

Section 4.2. Then, in Section 5, we propose an efficient dynamic-

programming algorithm to align two traces such that the similarity

metric is maximized. Our experimental results in Section 6 demon-

strate the accuracy of our methodology with respect to a prototype

system with heterogeneous cores.

2. RELATED WORK
Since the benefits of heterogeneous CMPs heavily rely on the

workload-to-core mapping (i.e., scheduling policy), a significant

amount of work has focused on novel scheduling policies to improve

heterogeneous CMP performance. Specifically, existing propos-

als have investigated sampling-based scheduling [9], profile-based

scheduling [2], model-based scheduling [3], or the use of specific

performance-counters (e.g. cache misses) to guide scheduling [8].

The majority of prior studies on heterogeneous CMPs have been

evaluated using performance simulators. Unfortunately, the excru-

ciatingly slow speeds of the state-of-the-art performance simulators

limits studies to a very short duration on the target system (e.g. 1-10

seconds) [12]. While performance simulator based studies are ap-

plicable for studying the system performance within very short time

periods, a simulation based study is impractical for more realistic

energy efficiency studies. Specifically, the typical thermal time con-

stants require simulating several minutes of a target system, which

may take months of simulation time with the detailed performance

simulators.

On the other hand, only a few of the prior works performed eval-

uations by running workloads on real (prototype) heterogeneous sys-

tems. Specifically, [5, 8] used proprietary hardware mechanisms to

“defeature” an existing out-of-order Intel Xeon R© (big) core to em-

ulate an in-order Intel AtomTM (small) core, e.g. by reducing the

retired instruction count from four to one micro-op per cycle. This

allowed them to run workloads on a system with 1 big core and 3

small cores, all on the same chip. Although such systems can be

used to run realistic workloads, they are not freely available to the

wider research community. Besides, it may be expensive to build

such prototype systems, and kernel-level scheduling algorithms may

be needed as in [8].

The methodology we propose is based on collecting separate ex-

ecution traces from existing off-the-shelf cores, and then aligning

the samples across multiple traces. Trace-based analysis have been

widely used for homogeneous systems, and the need for trace align-

ment was discussed in [6, 10]. The motivation for trace alignment

on homogeneous cores is to be able to collect tens or hundreds of

metrics for a workload execution. Collecting all the metrics in a

single run is not possible because of the limited number of hard-

ware performance counters, and the potential overhead of monitor-

ing more than a few metrics. So, the same workload can be run mul-

tiple times, each time collecting a different set of metrics. Due to

the non-deterministic execution of kernel tasks, it was observed by

both [6] and [10] that the traces collected were not aligned even if the

same workload is executed on the same system. For this, trace align-

ment algorithms were proposed based on dynamic programming in

[6] and [10]. Both of these algorithms are based on Dynamic Time

Warping (DTW) [1], a technique used in speech recognition. The ba-

sic idea is to compute an ordered matching between individual trace

entries such that the total IPC mismatch between aligned entries is

minimized. The similarity between entries across multiple traces is

modeled in a trivial way, because the IPC values are expected to be

identical across multiple runs. Specifically, the dynamic program-

ming objective in both [6] and [10] is to minimize:

DTWError =

|W |
X

k=1

|xi − yj | , where wk = (i, j) (1)

Here, the alignment is represented as a sequence W of pairs (i, j),

where xi and yj are the IPC values of the aligned entries from two

different traces. As can be seen, it is implicitly assumed that the IPC

values are near-identical for the aligned entries.

On the other hand, when the traces collected are from different

types of cores, such an assumption no longer holds. When the same

sequence of instructions is executed on a small core and a big core,

the performance differences can be significant. For example, for an

execution phase with high instruction level parallelism (ILP), a su-

perscalar (big) core can have significantly larger IPC values than a

single-issue (small) core. Conversely, for a memory-bound phase,

the difference between IPC values is likely to be smaller. So, a simi-

larity metric based on IPC values alone is not enough to align traces

from different types of cores. In this paper, we propose wavelet

based models to capture both fine-grain and coarse-grain software

phases. To the best of our knowledge, this is the first study that illus-

trates trace collection and trace alignment to enable arbitrary length

energy efficiency studies on target heterogeneous platforms.

3. PROBLEM FORMULATION
Let trace T be defined as a sequence of periodic intervals, each

with a set of values for specific power and performance event coun-

ters. In this paper, we focus on traces collected through kernel sam-

pling mechanisms. In particular, the traces we collect are from a

system that allows sampling counter values at every 4ms intervals.

For each such interval, our traces contain the values corresponding

to the number of instructions retired, stall cycles, sleep state residen-

cies, average power consumption, etc. for each core in the system.

Readers can refer to [7] for details on how to sample different per-

formance counters for an Intel processor.

Assume that there are n intervals stored sequentially in trace T ,

and let T [i] denote the ith such interval, where 1 ≤ i ≤ n. We can

denote a sequence of intervals from (including) T [i] to (excluding)

T [j] as T [i, j), where 1 ≤ i ≤ j ≤ n. Obviously, T [i, i) corre-

sponds to an empty interval, and T [i, i+1) corresponds to T [i]. Let

T [i, j).instrs, T [i, j).cycles, and T [i, j).IPC denote the number

of instructions retired, the clock cycles spent, and the average num-

ber of instructions per cycle (IPC) in the sequence T [i, j).

For simplicity of presentation, we will focus on matching only

two traces. Let TR be the reference trace collected by running work-

loadW on core typeR, and let TM be the trace collected by running

the same workload on core type M at a different time. The trace

alignment problem is to match each interval TR[i] to a (possibly

empty) sequence of intervals TM [j, k) such that the matched inter-

vals have the maximum similarity. The similarity metric needs to be

modeled properly to capture software phases, as illustrated in Fig-

ures 1 and 2. Our proposed model to capture the similarity between

different intervals will be explained in more detail in Section 4.

For proper trace alignment, additional constraints need to be en-

forced on the matching problem. Consider any pair of indices i1 and

i2 such that 1 ≤ i1 < i2 ≤ n. Let TM [j1, k1) and TM [j2, k2) be

the intervals matched to TR[i1] and TR[i2], respectively. The fol-

lowing constraints need to be satisfied for the matching problem:

1. Matching without overlaps: [j1, k1) ∩ [j2, k2) = ∅.

2. Ordered matching: j1 < j2.

3. Continuous matching: If i2 = i1 + 1, then j2 = k1.

Figure 3 illustrates an example matching solution, where the con-

straints above have been satisfied.

It is possible to extend this formulation to handle the alignment

of an arbitrary number of traces, each collected by running the same

workload W on different types of cores or under different power

settings2. One of these traces can be chosen as the reference trace

2For example, one can collect a different trace corresponding to each
dynamic voltage frequency scaling (DVFS) configuration of each
core.

656

TM

TR

Figure 3: A matching solution between traces TR and TM .

TR, and each of the remaining traces can be aligned with TR one by

one, leading to the alignment of all traces. An offline simulator us-

ing these aligned traces can then rapidly provide us with the overall

performance/energy characteristics of a heterogeneous architecture

and its core-scheduling algorithm running workload W .

The algorithms proposed in this paper are for single-threaded

workloads. Furthermore, we focus on heterogeneous systems with

infrequent task migrations (e.g. every few miliseconds). This way,

the runtime overheads due to core migrations (e.g. cache warm-

up penalties, etc.) are negligible compared to the overall execution

times. This methodology can be extended in a future work to handle

multiple threads and to incorporate migration overheads.

4. MODELING SIMILARITY BASED ON

WAVELETS
We have formulated the trace alignment problem in Section 3

in terms of matching each interval TR[i] to a sequence of intervals

TM [j, k). For this, we first need to define a similarity metric such

that maximizing it during matching is expected to align the inter-

vals corresponding to the same software phases. Visual inspection

of Figure 2 shows that the actual IPC values of the aligned inter-

vals can differ significantly because of the fact that these traces are

collected from different types of cores. Hence, a simple similarity

metric based on IPC values as in [6, 10] cannot be used here.

On the other hand, the IPC change patterns are similar between

the two traces in Figure 2, because these traces correspond to the ex-

ecution of the same workload. For example, if the workload involves

a compute-intensive phase followed by a memory-bound phase, it is

expected that the IPC values decrease in the corresponding trace in-

tervals of both cores (but possibly with different amounts). Based

on this intuition, we propose a trace feature model using wavelets in

Section 4.1. Then, we propose a similarity metric for alignment in

Section 4.2.

4.1 WaveletBased Feature Modeling
Wavelets are used to decompose mathematical functions hierar-

chically. In other words, they can describe a function in terms of a

coarse overall shape, plus different levels of coarse-to-fine-grain de-

tails [14]. They have been used in many signal processing, computer

graphics, and computer vision applications.

The continuous wavelet transform (CWT) of a function f(t) can

be obtained by scaling a mother wavelet (such as the Haar wavelet in

Figure 4(a)) by different scaling factors and convolving them with

f(t). Unlike Fourier transform, CWT of a signal allows a time-

frequency representation with both time and frequency localization.

In other words, CWT of f(t) helps analyze the spectral components

at different time intervals of f(t). In this section, we will make

use of wavelet coefficients to model the trace features based on IPC

change patterns of different frequencies.

Let us consider a given trace T as a function where T [t] is the

IPC value at interval t. Let ψi[t] denote the Haar wavelet with scale

s = i. We can compute the wavelet coefficients of T corresponding

to ψi[t] by computing the following convolution:

(T ∗ ψi)[t] =
∞

X

τ=−∞

T [τ] · ψi[t− τ] (2)

Figure 4 illustrates ψ1[τ], ψ1[t − τ], ψ2[t], and ψ2[t − τ] in

−1

0

1

1

0

−1

0

t

t

1

0

1

(a)

(c)

(b)

(d)

s=2

s=1 s=1

−1

−1

s=2

Figure 4: (a) The Haar wavelet ψ1(τ). (b) The translated

wavelet ψ1(t − τ). (c) The scaled wavelet ψ2(τ). (d) The scaled

and translated wavelet ψ2(t− τ).

parts (a)-(d). Observe that (T ∗ ψ1)[t] = T [t + 1] − T [t], and

(T ∗ ψ2)[t] = (T [t+ 2] + T [t+ 1])− (T [t] + T [t− 1]).

In general, the wavelet coefficients for ψi are the difference val-

ues between the last i intervals and the next i intervals at each point

t. Intuitively, if the scale value i is small, the wavelet coefficients

correspond to the amplitudes of the high frequency components at

different points, and vice versa. By computing the wavelet coeffi-

cients for different scale values, we can obtain a range of spectral

components at each point t.
Since it is not computationally efficient to compute the wavelet

coefficients for each ψi, we will focus on only a few sufficiently

different scale values i to model the trace features. Specifically, let

W
f
T [t] denote the wavelet coefficient for ψ(2f) at T [t]:

W
f

T [t] = (T ∗ ψ(2f))[t] (3)

By computing each W
f
T [t] for 0 ≤ f ≤ fmax, we can obtain

fmax + 1 different features at each point t, corresponding to high-

frequency (small f) and low-frequency (large f) changes in the IPC

values.

To normalize the features across different scale values, we use

the z-score concept from statistics. The z-score (also known as the

standard score) of a given sample x indicates by how many standard

deviations x is above or below the mean of the population. We can

compute the normalized wavelet coefficients (Z
f

T) using this defini-

tion as follows:

Z
f
T [t] =

W
f
T [t]− µf

T

σ
f
T

(4)

where µ
f
T and σ

f
T are the mean and the standard deviation of the

sequence W
f
T , respectively.

In our implementation, we compute 6 feature sets Z0
T to Z5

T for

each trace T . Figure 5 illustrates the Z0
T and Z5

T values for a snip-

pet of the gcc workload on the big core. Observe that while Z0
T

captures the fine-grain (high-frequency) changes in the IPC values,

Z5
T captures the coarser-grain (lower-frequency) changes. Although

not shown here due to page limitations, the plots of the correspond-

ing Z0
T and Z5

T for the small core snippet also have very similar

shapes to the ones in Figure 5.

4.2 Modeling Similarity Between Traces
As discussed earlier, the Z

f

T [t] values (for 0 ≤ f ≤ fmax) of a

trace can capture software phases of different granularities. Let us

now consider two traces obtained by running the same workload on

different types of cores. Even though the actual IPC values can be

significantly different, the software phases across different cores are

657

Z
0 T

Z
5 T

fe
at

u
re

 0

 1

 2

 3

 4

 5

IP
C

−10

−5

 0

 5

 10

−5

 0

 5

retired instruction count

fe
at

u
re

Figure 5: The IPC, Z0
T , and Z5

T values are plotted for a 16-second snippet of the gcc workload (SPEC-INT) on the big core.

still expected to be similar. In this section, we propose a similar-

ity metric between different core traces based on how the software

phases match each other.

In statistics, Pearson product-moment correlation coefficient

(PPMCC) [13] can be used to measure the correlation between two

sequences X and Y , and is defined as follows:

PPMCC(X,Y) =
1

n− 1

X

(xi,yi)∈(X,Y)

„

xi − µx

σx

«

·

„

yi − µy

σy

«

(5)

where µx, σx, µy , and σy correspond to the mean and the standard

deviation of the sequences X and Y , respectively. Observe that the

summation is over the products of the z-scores (as described in Sec-

tion 4.1) of the individual entries of X and Y . Note that a larger

PPMCC(X,Y) value indicates higher correlation between X and

Y , and vice versa. Intuitively, if the two signals corresponding to

X and Y have matching peaks and valleys, then this will lead to a

higher PPMCC(X,Y) value.

In Section 4.1, we showed how the wavelet coefficients of dif-

ferent scales correspond to software phases of different granulari-

ties. Hence, aligning the software phases of two traces TR and TM

can be achieved by maximizing the correlation between their cor-

responding wavelet coefficients. Based on this, the first alignment

objective can be formulated as follows:

maximize

fmax
X

f=0

PPMCC(W f
R,W

f
m) (6)

where W
f
R and W

f
M are the wavelet coefficients of TR and TM ,

respectively, as defined in Equation 3. Substituting (4), (5), and re-

moving the constant term, we can rewrite (6) as:

maximize

n
X

i=1

fmax
X

f=0

Z
f
R[i] · Zf

M [j, k) (7)

where each TR[i] is aligned to TM [j, k) as formulated in Section 3.

Since our focus is on heterogeneous systems with cores of same

ISA, our second alignment objective is to minimize the mismatch in

the number of instructions retired3, which is denoted as rmm, and

defined as:

rmm =
|TR[i].instrs − TM [j, k).instrs|

TR[i].instrs
(8)

We can incorporate rmm into our initial objective (7) to obtain

the final alignment objective function:

maximize

n
X

i=1

sim (TR[i], TM [j, k)) (9)

where:

sim (TR[i], TM [j, k)) = (1− rmm)

fmax
X

f=0

Z
f
R[i] · Zf

M [j, k) (10)

In summary, Equation 10 defines the similarity between intervals

TR[i] and TM [j, k) based on 1) the retired instruction counts, and 2)

the correlation between the normalized wavelet coefficients.

5. TRACE ALIGNMENT ALGORITHM
In this section, we propose an algorithm to solve the trace align-

ment problem as formulated in Section 3 to maximize the similarity

function defined in Equation (10). The basic dynamic programming

(DP) formulation is similar to the DTW technique used in [6] and

[10], and is explained in Section 5.1. This basic algorithm has high

time complexity with respect to the size of the traces. Hence, it is

not scalable enough to handle very long execution traces. We pro-

pose improvements to this DP formulation in Section 5.2 to reduce

its asymptotic complexity.

5.1 Dynamic Programming Formulation
Let the reference trace be TR, with size n, and let the trace to be

matched be TM with size m. As before, assume T [i, j] and T [i, j)

3As discussed before, occasional mismatches in the retired instruc-
tion counts are unavoidable because of the non-deterministic exe-
cution of kernel tasks, etc. However, such mismatches should be
minimal between aligned traces.

658

denote the sequence of intervals [i, j] and [i, j) in trace T , respec-

tively4.

The DP formulation is based on the following optimal substruc-

ture property.

Property 5.1. Consider the problem of matching two traces

TR[1, n] and TM [1, m]. Let A be an optimal matching solution

for this problem, where the last element of TR, TR[n], is matched

to TM [jn, kn]. Let A′ ∈ A be the matching solution corresponding

to intervals TR[1, n − 1]. It must be the case that A′ is an optimal

solution for the subproblem of matching TR[1, n− 1] to TM [1, jn).

Let s[i, k] denote the optimal score for the problem of matching

TR[1, i] to TM [1, k). The following equation must hold:

s[i, k] = max
1≤j≤k

{s[i− 1, j] + similarity(TR[i], TM [j, k))}

where the similarity function is as defined in Equation (10).

According to Property 5.1, the problem of matching TR[1, i] to

TM [1, k] can be solved by choosing the j value that maximizes the

sum of 1) the optimal cost of the remaining subproblem of matching

TR[1, i − 1] to TM [1, j), and 2) the similarity score of matching

TR[i] to TM [j, k). Based on this, a dynamic programming algorithm

can be formulated to compute the partial solutions iteratively in a

bottom up fashion, and this algorithm is guaranteed to compute the

optimal alignment solution for traces TR[1, n] and TM [1, m).

5.2 Runtime Improvements
The asymptotic runtime complexity of the basic DP algorithm

proposed in Section 5.1 is θ(n · m2), which is too high for long

traces. In this section, we propose heuristic improvements to reduce

this runtime to θ(n+m) while maintaining the solution quality. The

runtime improvements will be based on two observations. Assume

that the interval TR[i] is matched to TM [j, k) in an optimal matching

solution for the following.

Observation 5.1. It is expected that the workload phase executed

during TR[i] is the same phase executed during TM [j, k), because

they are matched to each other in the optimal solution. Since

the cores R and M are assumed to have the same instruction set

architecture, the number of instructions retired during TR[i] and

TM [j, k) are also expected to be similar.

Observation 5.2. Due to Observation 5.1, the number of instruc-

tions executed in TR[1, i − 1] is expected to be reasonably close to

the number of instructions executed in TM [1, j).

According to Observation 5.1, we only need to consider the

matching solutions where the instruction counts of the matched in-

tervals are reasonably close. In other words, we can define the fol-

lowing constraint for a valid matching between TR[i] and TM [j, k):

r1 ≤
TR[i].instrs

TM [j, k).instrs
≤ r2 (11)

where r1 and r2 are predefined tolerance values for instruction count

mismatches. In our implementation, we use r1 = 0.5 and r2 =
1.5 to allow up to 50% mismatches in the instruction counts of the

matched intervals. Note that despite such a relaxed constraint, our

similarity function in Equation (10) still penalizes the mismatches in

the instruction counts.

According to Observation 5.2, we can compute the s[i, k] scores

only for the intervals TR[1, i] and TM [1, k] that have reasonably

close instruction counts. For a given TR[i], let ki be the index chosen

to minimize the expression |TR[1, i].instrs − TM [1, ki].instrs|.

4The half-open intervals are used to enable matching an interval
TR[i] to an empty interval TM [k, k).

ALIGN-TRACES (TR[1, n], TM [1, m))

for i← 1 to n do

for k ← (ki − ǫ) to (ki + ǫ) do

s[i, k]← 0
for j ← (k − δ) to k do

if s[i− 1, j] + similarity(TR[i], TM [j, k)) > s[i, k]
s[i, k]← s[i− 1, j] + similarity(TR[i], TM [j, k))
parent[i, k]← j

construct the solution by backtracing from parent[n,m]

Figure 6: The proposed dynamic programming algorithm

In other words, if we were aligning traces only based on the total re-

tired instruction counts, TR[i] would be matched5 to TM [ki]. Based

on Observation 5.2, we can compute the s[i, k] scores only for the k
values where k ∈ [ki − ǫ, ki + ǫ], where ǫ is a predefined tolerance

value. The value of ǫ should be chosen such that the misalignment

due to the accumulated noise (i.e. the additional instructions from

background kernel tasks, etc.) is expected to be less than ǫ. In our

implementation, we have set ǫ = 1000 for all our experiments, with-

out fine tuning. For very long traces, our implementation also allows

periodically backtracing from the partial solutions to reset the accu-

mulated noise so that it never goes above the ǫ value chosen. Further

details about our implementation are omitted due to page limitations,

but will be published in an extended version in the future.

The pseudo code of our proposed algorithm is shown in Figure 6.

In each iteration of this algorithm, we evaluate the score of match-

ing interval TR[i] to TM [j, k). Due to constraint (11), the size of

TM [j, k) must be bounded in terms of the number of instructions

retired. Hence, the lower bound for j is set to be k − δ, where δ is

computed in every iteration to satisfy constraint (11). Since ǫ and

δ values are bounded by a constant, the runtime complexity of this

algorithm is θ(n+m).

6. EXPERIMENTAL RESULTS

6.1 Accuracy of the Alignment Algorithm
In the first set of experiments, our objective is to evaluate the

accuracy of the proposed trace alignment algorithm. For this, we

make use of proprietary performance accurate CPU simulators cor-

responding to a big core and a small core, and collect traces for snip-

pets of SPEC-INT benchmarks. During each simulation, the exact

sequence of instructions executed for the given workload is known

(in contrast to the execution on a real system, where there are non-

deterministic background tasks). So, the exact alignment informa-

tion of the small and big core traces is available ahead of time. How-

ever, running these simulations is expensive, and we cannot collect

long enough traces to demonstrate the benefits of heterogeneity. In

this section, we will use these traces to evaluate the accuracy of our

alignment algorithms.

Let performance scalability at time t for a particular task be de-

fined as follows:

scalability =
IPCbig

IPCsmall

(12)

where IPCbig and IPCsmall denote the average IPC achieved if the

same sequence of instructions are run on the big core and small core,

respectively.

Our experimental methodology is as follows. We first collect big

core trace TR and small core trace TM for each benchmark through

detailed performance simulations. Then, for each interval TR[i], we

compute the performance scalability as defined in Equation 12. Af-

ter that, we artificially add noise to TM (see below for details) to

5It is straightforward to show that for all i values, 1 ≤ i ≤ n, the
entire set of corresponding ki values can be computed in θ(n+m)
time as a preprocessing step.

659

Table 1: Experimental results showing the robustness of the proposed alignment algorithm

NOISE=1% NOISE=5% NOISE=10%
benchmark Proposed Algorithm Instr Cnt Based Proposed Algorithm Instr Cnt Based Proposed Algorithm Instr Cnt Based

80% accr. avg. error 80% accr. avg. error 80% accr. avg. error 80% accr. avg. error 80% accr. avg. error 80% accr. avg. error

astar B 100% 1% 97% 8% 100% 4% 88% 23% 97% 8% 75% 39%

bwaves b 100% 1% 70% 32% 99% 5% 65% 48% 92% 9% 61% 49%

bzip2 c 92% 5% 81% 11% 89% 8% 61% 25% 81% 13% 44% 36%

calculix h 98% 2% 86% 12% 98% 6% 77% 16% 88% 11% 71% 19%

gamess c 100% 1% 100% 2% 100% 4% 100% 4% 95% 8% 94% 8%

gcc 166 100% 1% 70% 30% 99% 5% 60% 38% 92% 9% 50% 38%

gemsFDTD r 99% 1% 78% 27% 98% 5% 52% 49% 92% 9% 36% 57%

gobmk s 99% 1% 92% 8% 99% 5% 92% 10% 91% 9% 87% 12%

h264ref f 100% 2% 80% 12% 99% 5% 72% 14% 95% 8% 71% 15%

hmmer n 97% 3% 69% 17% 95% 7% 48% 28% 86% 11% 46% 30%

mcf r 100% 1% 97% 6% 100% 4% 95% 8% 95% 8% 86% 11%

milc s 100% 1% 48% 32% 99% 5% 40% 49% 94% 9% 35% 67%

namd n 100% 1% 100% 3% 100% 4% 100% 6% 94% 8% 93% 9%

omnetpp o 100% 1% 92% 8% 100% 4% 92% 9% 94% 8% 85% 11%

perlbench c 100% 1% 73% 14% 100% 4% 57% 21% 97% 7% 56% 21%

sjeng r 100% 1% 100% 1% 100% 5% 100% 4% 93% 8% 96% 8%

soplex p 93% 6% 82% 13% 91% 8% 80% 14% 87% 11% 74% 15%

wrf r 99% 2% 59% 34% 96% 6% 41% 61% 86% 11% 32% 92%

xalancbmk r 100% 1% 64% 18% 100% 4% 54% 23% 95% 8% 53% 23%

zeusmp z 99% 2% 79% 16% 98% 6% 48% 30% 93% 9% 51% 33%

Avg 99% 2% 81% 15% 98% 5% 71% 24% 92% 9% 65% 30%

obtain the noisy trace T ′
M . Using our proposed algorithms, we align

TR and T ′
M for each benchmark, and compute the performance scal-

ability for each interval TR[i] based on the alignment results. By

comparing these scalability values with the original ones (before the

addition of noise), we can evaluate how well our alignment algo-

rithms perform in the presence of noise.

Our alignment algorithms were implemented in C++, and run on

a 3GHz Xeon system. For all benchmarks in this experiment, the

alignment execution took less than 4 seconds, which is significantly

less than the runtime of the performance simulator.

Table 1 shows the results of this experiment. Here, we have

stress-tested our algorithms by adding different amounts of noise to

TM . Specifically, “NOISE = X%” in this table means that the random

noise added to each interval is from a Gaussian distribution with

mean X% and standard deviation 2X%. In this table, we compare

the results of our proposed algorithm with a straightforward align-

ment technique using retired instruction counts only.

The accuracy values in Table 1 are reported in terms of two val-

ues: 1) 80% accuracy, which is the percentage of the intervals with

errors less than 20%, and 2) average error. For example, when 10%

noise is added to benchmark astar B, 97% of the intervals were pre-

dicted with less than 20% error, and the average error was 8%. The

results in this table show that as the noise ratio increases, we cannot

rely on only instruction counts for alignment. On the other hand,

even for large noise ratios, our proposed alignment algorithms can

still match the traces with reasonably high accuracy.

6.2 Accuracy of the Offline Methodology
In the second set of experiments, our purpose is to show that the

results of our offline methodology correlates well with the actual

real-time measurements collected by running the same workloads

on a system with heterogeneous cores.

Our experiments have been performed on a prototype system

that emulates a heterogeneous architecture with small and big cores.

This system contains 4 Intel i7 cores, each of which can be defea-

tured using proprietary hardware mechanisms to emulate small core

performance. A similar evaluation platform was used by the authors

of [5, 8], and the readers can refer to them for further details. In the

rest of this section, we will use the terms big core and small core to

refer to an original Intel i7 core and a defeatured core, respectively.

A modified Linux kernel is run on this system to enable schedul-

ing of tasks to heterogeneous cores. The prototype kernel scheduling

algorithm estimates the performance scalability of the running pro-

cess at every 4ms time intervals, and assigns the process to a big core

if scalability is above a certain threshold (which is set to 2.0 in our

experiments). Otherwise, it assigns it to a small core. The scalabil-

ity prediction is done during runtime based on sampling IPC values

periodically on small and big cores and training dynamic prediction

models. The details of the prediction and scheduling algorithms are

omitted due to page limitations.

In our experiments, we have configured the heterogenous sys-

tem to consist of 1 big and 3 small cores. On this system, we have

executed single-threaded SPEC-INT benchmarks, and measured the

energy and runtime for each benchmark execution. In these runs, we

have relied on the kernel scheduling algorithm (described above) to

dynamically choose the appropriate core type at periodic time inter-

vals and migrate the process between cores as needed. The results

of these experiments are reported in Table 2, under columns titled

“online measurements”. The energy values reported in this table

are normalized with respect to the workload with the lowest energy.

To evaluate the accuracy of our offline methodology, we first con-

figured the system as 4 big cores, and executed the same benchmarks

to collect big core traces. Then, we reconfigured the system as 4

small cores, and repeated the runs to collect small core traces. Fig-

ure 1 shows a small snippet of the big core and small core traces

for the gcc benchmark. After that, we aligned these traces using the

algorithms proposed in this paper. The aligned traces for the same

snippet are shown in Figure 2. A different snippet of the gcc bench-

mark is shown in Figure 7 with more details. Observe that both the

high-frequency and low-frequency IPC changes are aligned almost

perfectly between the small and big core traces using the algorithms

proposed.

The runtime spent to align each benchmark is shown under the

second column of Table 2. Observe that the alignment runtimes are

less than the workload execution runtimes for all but one benchmark.

This shows that the proposed methodology is scalable enough to be

used to align very long traces.

To evaluate the accuracy of the offline analysis using aligned

traces, we have implemented the same kernel scheduling policy (de-

scribed above) for offline analysis. We simulated this scheduling

policy using the aligned big core and small core traces. The results

of this methodology are listed under column “offline with our align-

ment algorithm” of Table 2. Observe that the runtime and energy

measurements of the online runs are very close to the results ob-

660

 0

 1

 2

 3

IP
C

retired instruction count

big core
small core

Figure 7: The alignment result of two traces for a snippet from the gcc benchmark

Table 2: Experimental results demonstrating the accuracy of the offline methodology
Alignment Online Measurements Offline with our Algorithm Offline with Instr. Cnt. Based Alignment

Benchmark runtime runtime energy runtime energy runtime energy runtime energy runtime energy

(sec) (sec) (norm) (sec) (norm) (sec) (norm) (sec) (norm) (sec) (norm)

gcc 492 876 46 888 49 1% 6% 666 53 24% 16%

perlbench 675 1170 74 1171 79 0% 7% 947 83 19% 13%

bzip2 771 1637 80 1714 80 5% 0% 1323 95 19% 19%

h264ref 898 1498 136 1590 137 6% 1% 1476 143 1% 5%

omnetpp 299 649 29 656 30 1% 1% 655 30 1% 1%

mcf 265 582 27 570 29 2% 7% 555 30 5% 9%

gobmk 617 1655 72 1651 74 0% 3% 1467 81 11% 12%

hmmer 470 260 62 255 62 2% 1% 273 62 5% 1%

sjeng 724 1845 76 1858 78 1% 2% 1865 79 1% 5%

astar 411 917 49 919 50 0% 2% 898 51 2% 4%

Avg 2% 3% 9% 8%

tained through the proposed offline methodology. This shows that

accurate power/performance estimations of heterogeneous systems

can be achieved by aligning traces collected from different homo-

geneous systems. This methodology also allows exploring different

scheduling policies on the aligned traces without kernel-level imple-

mentations on a heterogeneous system.

For comparison purposes, we repeated this experiment for the

traces aligned using instruction counts only, the results of which are

listed under the last 4 columns of Table 2. Observe that simplistic

trace alignment can lead to large errors (up to 24%) especially for

benchmarks with non-uniform execution phases, such as gcc, perl-

bench, bzip2, and gobmk. On the other hand, aligning traces using

the proposed algorithms leads to much more accurate results.

7. CONCLUSIONS
In this paper, we have proposed a trace alignment algorithm for

offline workload analysis of heterogeneous systems. Our experi-

ments demonstrate the accuracy of this methodology with respect to

the measurements taken from actual executions on a heterogeneous

system and performance accurate proprietary CPU simulators. The

proposed methodology can be used for exploration of heterogeneous

systems by collecting traces from off-the-shelf homogeneous sys-

tems. It can also be used for evaluating different scheduling policies

without implementing them in a kernel and running on a real hetero-

geneous system.

8. REFERENCES

[1] D. J. Berndt and J. Clifford. Using dynamic time warping to

find patterns in time series. In Working Notes of the

Knowledge Discovery in Databases Workshop, pages

359–370, 1994.

[2] J. Chen and L. K. John. Efficient program scheduling for

heterogeneous multi-core processors. In DAC, pages 927–930,

2009.

[3] K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and

J. Emer. Scheduling heterogeneous multi-cores through

performance impact estimation (PIE). In ISCA, pages

213–224, 2012.

[4] P. Greenhalgh. Big.LITTLE processing with ARM

Cortex-A15 & Cortex-A7: Improving energy efficient in

high-performance mobile platforms, 2011.

[5] V. Gupta and P. Brett et. al. Extending the dynamic power

range of client devices using heterogeneous multicore

processors. In SHAW, 2012.

[6] M. Hauswirth, A. Diwan, P. F. Sweeney, and M. C. Mozer.

Automating vertical profiling. In ACM SIGPLAN Conf. on

object-oriented programming, systems, languages, and

applications (OOPSLA), pages 281–296, 2005.

[7] Intel Corporation. Chapter 18: Performance Monitoring, Intel

64 and IA-32 Architectures Software Developer’s Manual.

http://www.intel.com/content/www/us/en/processors/architectures-

software-developer-manuals.html.

[8] D. Koufay, D. Reddy, and S. Hahn. Bias scheduling in

heterogeneous multi-core architectures. In Eurosys, pages

125–138, 2010.

[9] R. Kumar, K. I. Farkas, P. Jouppi, and D. M. Tullsen.

Single-ISA heterogeneous multi-core architectures: The

potential for processor power reduction. In MICRO, pages

81–92, 2003.

[10] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney.

Aligning traces for performance evaluation. In IEEE IPDPS,

2006.

[11] Nvidia. Variable SMP - A multicore CPU architecture for low

power and high performance, 2011.

[12] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer.

Hasim: FPGA-based high-detail multicore simulation using

time-division multiplexing. In HPCA, 2011.

[13] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at

the correlation coefficient. The American Statistician,

42:59–66, 1988.

[14] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. Wavelets for

computer graphics: A primer, part 1. IEEE Computer

Graphics and Applications, 15:76–84, 1995.

661

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

