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Instrumentation is one tool for collecting the information 
needed to understand programs. Instrumentation- based 
tools typically insert extra code into a program to record 
events during execution.1-4 The cost of executing the extra 
code can be as low as a few cycles, enabling fine-grained 
observation down to the instruction level. 

Pin2 (www.pintool.org) is a software system that per-
forms runtime binary instrumentation of Linux and 
Microsoft Windows applications. Pin’s aim is to provide 
an instrumentation platform for building a wide variety of 
program analysis tools, called pintools. By performing the 
instrumentation on the binary at runtime, Pin eliminates 
the need to modify or recompile the application’s source 
and supports the instrumentation of programs that dy-
namically generate code. 

INSTRUMENTATION 
Pin provides a platform for building instrumentation 

tools. A pintool consists of instrumentation, analysis, 
and callback routines.1 Instrumentation routines inspect 
the application’s instructions and insert calls to analysis 
routines. Analysis routines are called when the program 
executes an instrumented instruction and often perform 
ancillary tasks. The program invokes callbacks when an 
event occurs, for example, when it is about to exit. 

Figure 1 shows a simple pintool that prints the memory 
addresses of all data a program reads or writes. Instruc-

A 
decade ago, systems with multiple proces-
sors were expensive and relatively rare; only 
developers with highly specialized skills could 
successfully parallelize server and scientific 
applications to exploit the power of multipro-

cessor systems. In the past few years, multicore systems 
have become pervasive, and more programmers want to 
employ parallelism to wring the most performance out of 
their applications. 

Exploiting multiple cores introduces new correctness 
and performance problems such as data races, deadlocks, 
load balancing, and false sharing. Old problems such as 
memory corruption become more difficult because par-
allel programs can be nondeterministic. Programmers 
need a deeper understanding of their software’s dynamic 
behavior to successfully make the transition from single 
to multiple threads and processes. 

Software instrumentation provides the 
means to collect information on and effi-
ciently analyze parallel programs. Using 
Pin, developers can build tools to detect 
and examine dynamic behavior including 
data races, memory system behavior, and 
parallelizable loops. 
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#include <stdio.h>
#include “pin.H”
FILE trace;* 
VOID Address(VOID * addr) { fprintf(trace,”%p\n”, addr); }
VOID Instruction(INS ins, VOID *v) {
  if (INS_IsMemoryRead(ins)) { 
    INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(Address), 
      IARG_MEMORYREAD_EA, IARG_END); 
  } 
  if (INS_IsMemoryWrite(ins)) { 
    INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(Address), 
      IARG_MEMORYWRITE_EA, IARG_END); 
  } 
}
VOID Fini(INT32 code, VOID *v) { fclose(trace); }
int main(int argc, char *argv[]) { 
  PIN_Init(argc, argv);
  trace = fopen(“pinatrace.out”, “w”);
  INS_AddInstrumentFunction(Instruction, 0); 
  PIN_AddFiniFunction(Fini, 0);
  PIN_StartProgram();
  return 0; 
}
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In Pin’s high-performance probe mode option, the 
base overhead is near zero. The probe mode has a 
limited set of callbacks available and restricts tools 
to interposing wrapper routines for global functions. 
Figure 2 shows a pintool’s fragment that wraps calls to 
malloc so it can print the argument and return values. 
Image is an instrumentation routine that the program 
invokes every time a binary or shared library loads. It 
searches the binary for a function called malloc and 
replaces it with a call to malloc_wrap. When the pro-

tion is an instrumentation routine that Pin 
calls the first time the program executes an 
instruction, so the routine can specify how 
it should be instrumented. If the instruc-
tion reads or writes memory, this example 
pintool inserts a call to Address—an analy-
sis routine—and directs Pin to pass it the 
memory reference’s effective address. 
Immediately before a memory reference 
executes, the program calls Address, which 
prints the address to a file. The program in-
vokes a callback routine, Fini, when it exits. 
Instrumentation and callback routines are 
registered in the pintool’s main function. 

Figure 1 demonstrates only a small part 
of the Pin API. Whereas the example uses an 
instrumentation routine that can only see a 
single instruction at a time, Pin lets instru-
mentation routines see instruction blocks or 
whole binaries. The argument to Address is 
an effective address, but Pin provides much 
more, including register contents (for ex-
ample, value of R9), the instruction pointer 
(IP or PC), procedure argument values, and 
constants. The only callback used in the 
example is for program end, but Pin also 
provides callbacks to notify a pintool about 
shared library loads, thread creation, system 
calls, Unix signals, and Microsoft Windows 
exceptions. 

Although the instrumentation in this 
example is very simple, it is sufficient for 
a variety of useful tools.  Instead of writing 
addresses to a file, a tool could feed the ad-
dresses to a software model of a cache and 
compute the cache miss rate for the appli-
cation. By watching all the references to a 
specific memory location, it is possible to 
find an erroneous write through a pointer 
that overwrites a value with 1/100th the 
overhead of doing the same analysis in a 
debugger.

Pin uses a just-in-time (JIT) compiler to 
insert instrumentation into a running application. The 
JIT compiler recompiles and instruments small chunks of 
binary instructions immediately prior to executing them. 
Pin stores the modified instructions in a software code 
cache where they execute in lieu of the original applica-
tion instructions. The code cache allows Pin to generate 
code regions once and reuse them for the remainder of 
program execution, amortizing compilation costs. Pin’s 
average base overhead is 30 percent, and user-inserted 
instrumentation adds to the time. 

Figure 1. Pintool for printing all program memory read and write addresses. 

typedef void (*malloc_funptr_t)(size_t size); 
malloc_funptr_t app_malloc; 
VOID * malloc_wrap(size_t size) {
   void * ptr = app_malloc(size); 
   printf(\”Malloc %d return %p\”, size, ptr); 
return ptr; 

} 
VOID Image(IMG img, VOID *v) { 
  RTN mallocRtn = RTN_FindByName(img, “malloc”); 
  if (RTN_Valid(mallocRtn)) {
    app_malloc=
     (malloc_funptr_t)RTN_ReplaceProbed(mallocRtn,AFUNPTR(m
alloc_wrap)); 
  }
} 

Figure 2. Pintool’s fragment for wrapping malloc. 
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separate output file for each thread and retrieve the file 
descriptor from thread-local storage. 

Performance considerations 
Correcting a parallel program by adding locks is usually 

straightforward. However, a highly contended lock serializes 
execution and leads to poor CPU utilization. Because applica-
tion threads execute analysis routines, a highly contended 
lock in an analysis routine will also serialize the application’s 
execution. The serialization increases the pintool’s over-
head when compared to the application’s uninstrumented 
execution and might alter the parallel program’s behavior 
drastically. Pintool authors must employ standard parallel 
programming techniques to avoid excessive serialization. 
They should use thread-local storage to avoid the need to 
lock global storage. Instead of a single monolithic lock for a 
data structure, they should use fine-grained locks. 

False sharing is another pitfall in naïve pintools, occurring 
when multiple threads access different parts of the same 
cache line and at least one of them is a write. To maintain 
memory coherency, the computer must copy the memory 
from one CPU’s cache to another, even though data is not 
truly shared. False sharing is less costly when CPUs operate 
out of a shared cache, as is true for the four cores in the Intel 
Core i7 processor. Developers can eliminate false sharing by 
padding critical data structures to the size of a cache line or 
rearranging the structures’ data layout. 

Multithreaded versus  
multiprocess instrumentation 

Pin allows instrumentation of parallel programs that 
use multiple threads and multiple cooperating processes. 
The new thread executes the same instrumented code as 
the other threads and accesses the same data. When a pro-
gram spawns a new process or a process exits, Pin notifies 
the pintool. The pintool can choose to let the new process 
execute natively or under its control. The new process will 
have new code that the pintool must reinstrument. The 
processes do not share pintool data; however, a pintool can 
use OS-provided mechanisms for communication between 
the parallel program’s instrumented processes. 

EXAMPLE TOOLS  
Developers can use various Pin-based tools to analyze 

parallel program performance and correctness. 

Intel Parallel Inspector 
The Intel Parallel Inspector (http://software.intel.com/

en-us/intel-parallel-inspector) analyzes the multithreaded 
programs’ execution to find memory and threading errors, 
such as memory leaks, references to uninitialized data, 
data races, and deadlocks. Intel Parallel Inspector uses 
Pin to instrument the running program and collect the 
information necessary to detect errors. 

gram calls malloc, malloc_wrap is called instead, 
which calls the application malloc, then prints the 
argument and return value. To avoid infinite recur-
sion, the call to malloc from malloc_wrap should not 
be redirected, so we instead call the function pointer 
returned by RTN_ReplaceProbed. The data collected 
from this tool could be used to find a program that in-
correctly freed the same memory twice or track down 
some code that allocated too much memory.

In probe mode, the program binary is modified in 
memory. Pin overwrites the entry point of procedures 
with jumps (called probes) to dynamically generated in-
strumentation. This code can invoke analysis routines 
or a replacement routine. When the replacement routine 
needs to invoke the original function, it calls a copy of the 
entry point (without the probe) and continues executing 
the original program.

Instrumenting parallel programs 
Instrumenting a parallel program is not very different 

from instrumenting single-threaded programs. Pin provides 
callbacks when a new thread or new process is created. 
Analysis routines can be passed a thread ID so it is possible 
to attribute recorded data—for example, a memory refer-
ence address—to the thread that performed the operation. 

Instrumenting a multithreaded program does require 
some special care by the tool writer. When a pintool 
instruments a parallel program, the application threads 
execute the calls to analysis functions. If the pintool in 
Figure 1 is invoked on a multithreaded program, then all 
the application threads can call the Address function 
simultaneously. 

The pintool author is responsible for making the 
analysis functions thread-safe so they can be applied to 
a multithreaded program. Writing a thread-safe analy-
sis routine is similar to writing a thread-safe routine in a 
multithreaded program. Authors use locks to synchronize 
references to shared data with other threads. 

Pin also provides APIs for allocating and addressing 
thread-local storage. For example, the Address function 
in Figure 1 writes the program address to a file. The trace 
variable points to a FILE descriptor, which all threads 
share. It is not safe for multiple threads to write to FILE 
simultaneously. To enable this pintool to correctly instru-
ment a multithreaded program, the Address function must 
either have a lock around the call to fprintf or create a 

In probe mode, Pin overwrites the  
entry point of procedures with  
jumps to dynamically generated 
instrumentation.
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and record the wait time, synchronization object, and call 
stack. Because the Intel Parallel Amplifier only instruments 
synchronization routines and not every call and return, 
it cannot maintain a shadow call stack. Instead, the in-
strumentation unwinds the stack every time it needs to 
capture a call stack. 

Intel Trace Analyzer and Collector
The Intel Trace Analyzer and Collector provides infor-

mation critical to understanding and optimizing cluster 
performance by quickly finding performance bottlenecks 
with Message Passing Interface (MPI) communication. 
The tool presents a timeline showing when MPI mes-
sages are sent and received, and programmers can use 
this information to improve the CPU utilization. The Intel 
Trace Analyzer and Collector uses Pin’s probe mode to 
instrument calls to the MPI library, collecting time stamps, 
arguments, and other data. If a user requests call stack 
information, a JIT-mode tool instruments call and return 
instructions to maintain a shadow stack. 

CMP$im 
Memory system behavior is critical to parallel program 

performance. Computational bandwidth increases faster 
than memory bandwidth, especially for multicore systems. 
Programmers must utilize as much bandwidth as possible 
for programs to scale to many processors. Hardware-based 
monitors can report summary statistics such as memory 
references and cache misses; however, they are limited to 
the existing cache hierarchy and are not well suited for 
collecting more detailed information such as the degree 
of cache line sharing or the frequency of cache misses 
because of false sharing. 

CMP$im6 uses Pin to collect the memory addresses of 
multithreaded and multiprocessor programs, then uses 
a memory system’s software model to analyze program 
behavior. It reports miss rates, cache line reuse and shar-
ing, and coherence traffic, and its versatile memory system 
model configuration can predict future systems’ applica-
tion performance. While CMP$im is not publicly available, 
the Pin distribution includes the source for a simple cache 
model, dcache.cpp. 

PinPlay 
Debugging and analyzing parallel programs is difficult 

because their execution is not deterministic. The threads’ 

A data race occurs when two threads access the same 
data, at least one access is a write, and there is no syn-
chronization (for example, locking) between accesses.5 
Unsynchronized variable writes usually are a program-
ming error and can cause nondeterministic behavior. 

To detect data races, Parallel Inspector uses Pin to in-
strument all machine instructions in the program that 
reference memory and records the effective addresses 
(similar to Figure 1). It also instruments calls to thread syn-
chronization APIs. By examining the effective addresses, 
Intel Parallel Inspector can detect when multiple threads 
access the same data. The synchronization API’s instru-
mentation lets Intel Parallel Inspector determine if the 
memory accesses were synchronized. To help the pro-
grammer identify the cause of the data race, Intel Parallel 
Inspector shows the source lines and the call stacks lead-
ing to the problematic memory references. 

Pin provides an API for mapping a machine instruction 
address to the corresponding source line and file. A debug-
ger provides a call stack by unwinding stack frames and 
recovering the procedure call return addresses from the 
stack. Error-checking tools need to record the call stack for 
every memory reference because the tools might not de-
termine until later whether that reference caused an error. 
Unwinding the call stack for every reference is expensive. 
Instead, tools typically keep a shadow call stack. A pintool 
instruments all call instructions, saving the stack pointer’s 
current value and the called procedure on the shadow 
stack. Procedure return instructions are also instrumented, 
popping off enough shadow stack frames to resynchronize 
with the stack pointer’s current value. 

Intel Parallel Amplifier 
The Intel Parallel Amplifier (http://software.intel.com/

en-us/intel-parallel-amplifier) performs three types of anal-
ysis to help programmers improve program performance: 
hotspots, concurrency, and locks and waits. Hotspots at-
tribute time to source lines and call stacks, identifying the 
parts of the programs that would benefit from tuning and 
parallelism. Concurrency measures the CPUs’ utilization, 
giving whole program and per-function summaries. Locks 
and waits measures the time multithreaded programs 
spend waiting on locks, attributing time to synchronization 
objects and source lines. Identifying locks responsible for 
wait time and the associated source lines helps program-
mers improve a parallel program’s CPU utilization. 

Hotspot and concurrency analysis data comes from 
sampling. Intel Parallel Amplifier uses Pin to instrument 
the application to collect data for the locks and waits analy-
sis. Capturing accurate timing data requires low overhead 
instrumentation. The locks and waits analysis uses Pin’s 
probe mode to replace calls to synchronization APIs with 
wrapper functions, as Figure 2 demonstrates. The wrap-
per functions call the original synchronization function 

Computational bandwidth increases 
faster than memory bandwidth, 
especially for multicore systems. 
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instruction granularity, which is insufficient for parallel 
programming because many programs are parallelized 
at the loop level. 

To meet this need, developers created the Pin-based 
Prospector tool,10 which discovers potential parallelism 
in serial programs by loop and data- dependence profil-
ing. Prospector provides loop execution profiles such 
as trip counts and the number of instructions executed 
inside loops. It also dynamically detects loop-carried 
data dependencies, which must be preserved during the 
parallelization process. Programmers receive reports 
on candidate loops for parallelization and can manu-
ally parallelize them with systems such as OpenMP  
(http://openmp.org) and Threading Building Blocks.11 In 
addition to the profiler, Prospector provides several tools 
for visualizing and interpreting the profiling results. 

Figure 3 shows the results of applying Prospector to the 
cactusADM program in the SPEC2006 benchmark suite. 
Figure 3a is the call graph displayed by Prospector. One of 
the functions, CCTKi_ScheduleTraverseGHExtensions, 
is highlighted because it contains a parallelizable loop. 
Figure 3b is this function’s loop graph. 

Intel Software Development Emulator 
The Intel Software Development Emulator, or Intel SDE 

(www.intel.com/software/sde), is a user-level functional 
emulator for new instructions in the Intel64 instruction 
set built on Pin. Intel SDE supports emulation and debug-
ging of multithreaded programs that use the Intel AVX 
(www.intel.com/software/avx), AES, and SSE4 instruction 
set extensions.

Whereas most tools use Pin to observe a program’s ex-
ecution, Intel SDE uses Pin to alter the program while it is 
running. During instrumentation, it deletes all instructions 
that must be emulated and replaces them with calls to 
functions that emulate the instruction. 

relative progress can change in every run of the program, 
possibly changing the results. Even single-threaded pro-
gram execution is not deterministic because of behavior 
changes in certain system calls (for example, gettimeof-
day()) and stack and shared library load locations. 

PinPlay is a Pin-based system for user-level capture and 
deterministic replay of multithreaded programs under Pin. 
The program first runs under the control of a Pin-based 
logging tool, which captures all the system call side effects7 
and inter-thread shared-memory dependencies.8 Another 
Pin-based tool can replay the log, exactly reproducing the 
recorded execution by loading system call side effects 
and possibly delaying threads to satisfy recorded shared-
memory dependencies. 

Replaying a previously captured log by itself is not very 
useful. A pintool that instruments a program execution 
can also instrument a PinPlay log replay. The tool run-
ning off a PinPlay log sees the same program behavior 
on multiple runs, making the analysis deterministic. The 
program can also replay a PinPlay log while connected 
to a debugger, making multithreaded program debugging 
deterministic. As long as the PinPlay logger can capture a 
bug once, the behavior can repeat exactly multiple times 
with replay under a debugger. Future releases of Pin will 
include PinPlay. 

Prospector 
Compilers are ideal tools for exploiting parallelism 

because they can potentially perform automatic paral-
lelization. However, even state-of-the-art compilers miss 
many parallelization opportunities in C/C++ programs, 
and as a result, programmers are forced to manually paral-
lelize applications. The success of manual parallelization 
relies on execution profiler quality. Unfortunately, popu-
lar execution profilers, such as Gprof9 and Dev 8 Partner 
(www.compuware.com), profile programs at function or 
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Figure 3. Visualization of Prospector’s results: (a) call graph and (b) loop graph.
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the highest overhead—it is a GUI application that has a 
large amount of low trip count code. Microsoft Excel is 
also a GUI application, but the workload allows a large 
amount of idle time, which hides overhead introduced 
by instrumentation.

Figure 4b shows slowdown for heavyweight tools. 
Like MemTrace, the MemError and DataRace tools pri-
marily analyze memory references. DataRace records 
each memory address, but most of the overhead lies in 
the analysis—not address recording—explaining the 
higher overhead. MemError is the memory error analy-
sis tool included in Intel Parallel Inspector. It checks 
for references to unallocated or uninitialized data. 
Whereas DataRace buffers addresses and checks them 
in batches, this tool immediately checks every address.

Figure 4b demonstrates that the slowdown for execut-
ing the program with Pin and no instrumentation (JIT) 
is small compared to the tools that do something useful 
(MemError and DataRace), and the time for the JIT config-
uration is not a good predictor for heavyweight tool time. 
Therefore, developers of commercial pintools generally 
focus on reducing the overhead of their own instrumenta-
tion routines, and the overhead of Pin itself is quite low 
by comparison.

Intel SDE is primarily a tool for debugging programs 
that use new instructions before the corresponding hard-
ware exists. However, developers also can combine it with 
other tools to study performance. For example, combining 
Intel SDE and CMP$im lets developers study the memory 
system behavior of programs that use new instructions. 

PERFORMANCE AND SCALABILITY
Raw performance and scalability are both important 

properties when analyzing parallel applications. Pin’s in-
strumentation performance is highly tied to the running 
application and even more so to the instrumentation rou-
tines added by the user. Applications running under the 
control of Pin scale as well as they do when running na-
tively, and inserting heavy instrumentation code reduces 
this scalability.

Benchmarks and system details
For evaluation, we used a variety of workloads. 

Maxon Cinebench R10 is a photo-rendering workload 
that renders an image using a 3D scene file. POV-Ray is 
a publicly available ray-tracing package (www.povray.
org). The SPEC benchmarks represent a suite of stan-
dardized workloads (www.spec.org). Finally, Illustrator 
and Excel are GUI applications that were exercised using 
Visual Test.

We ran our experiments on an Intel Xeon RW5580 (Intel 
Core i7) processor. The system has two sockets with quad-
core processors and 6 Gbytes of memory and runs a 64-bit 
Windows 2003 Server with SP2. We disabled hyperthread-
ing to simplify the scalability analysis, limiting the system 
to eight cores.

Runtime overhead
We first present the performance of a variety of tools 

that cover the spectrum of actual use of Pin from simple 
analysis to heavyweight tools with complex runtime 
analysis. Figure 4 shows the slowdown for various tools 
normalized to native execution. 

The JIT configuration in Figure 4a executes the applica-
tion under control of the JIT, with no instrumentation. It 
represents a lower bound for lightweight tools that need 
the observability of JIT-mode execution. BBCount intro-
duces one counter increment per basic block. It is a lower 
bound for tools that only observe control flow. Its overhead 
increases as the average number of instructions per branch 
shrinks. 

MemTrace records each memory address accessed 
by a thread in a thread-private buffer. This tool’s source 
is in the Pin distribution. Cache simulators, memory 
corruption detectors, and data race detectors need to 
observe all memory addresses an application references, 
and MemTrace serves as a lower bound on their over-
head. For these lightweight tools, Adobe Illustrator has 
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Figure 4. Slowdowns for a variety of tools from (a) 
lightweight analysis to (b) heavyweight analysis, normalized 
to native execution times.
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Scalable workload performance
We next explored Pin’s performance scalability as it 

applies to additional threads and resources. Table 1 sum-
marizes the time to render the Cinebench scene in seconds 
for various tools and numbers of threads. We ran the work-
load with one, two, and four rendering threads, setting the 
affinity to ensure that each thread was assigned its own 
CPU. For the two- and four-thread experiments, we set 
the affinity to place all the rendering threads on the same 
socket. This placement performs better than using multiple 
sockets because it lets all threads share the last-level cache. 
Cross-socket data sharing uses the memory bus, which is 
dramatically slower.

In Table 1, Native represents running the application 
without Pin. Probe represents executing the application 

under the control of Pin in probe mode with no instrumen-
tation. As expected, there is no overhead. LocksAndWaits 
is a probe-mode tool that instruments synchronization 
APIs and has relatively low overhead. JIT represents run-
ning the application in JIT mode with no instrumentation. 
The InsCount tool counts the number of instructions ex-
ecuted by adding instrumentation to every basic block to 
update the instruction count. Compared to JIT, InsCount 
overhead comes from the additional JIT time to generate 
instrumentation and maintain the counter. Finally, Mem-
Trace, DataRace, and MemError represent high overhead 
tools as before. As Table 1 indicates, performance improves 
by nearly 4X with four threads.

Figure 5a shows the scaling in CPU time for a variety 
of configurations when running Cinebench. For each con-
figuration, we normalize the time for two and four threads 
to the time for one thread for the same configuration. The 
native application scales well, achieving a 3.5x speedup 
on four processors. Figure 4b shows that complex anal-
ysis adds overhead, but the instrumented application is 
expected to scale with the addition of more threads. Run-
ning under the control of Pin with no instrumentation (JIT) 
achieves scalability similar to native. For the heavyweight 
tools, there is a slight drop off in scalability. For MemTrace, 
limited memory bandwidth causes the reduced scalability. 
The other tools do more work per address, and memory 
bandwidth is less of a problem, but there is contention 
for tool-specific data structures. Figure 5b demonstrates 
similar trends in the POV-Ray benchmark. The native 
performance and JIT execution performance have almost 
perfect scaling. Instrumentation decreases the scaling.

Next, we explored the scalability of the MemTrace pin-
tool when applied to the SPEC OMP2001 benchmarks. We 
varied the number of application threads from one to four, 
measured the time to execute under the control of Pin with 
no tool and with the MemTrace pintool, and normalized 
overhead to the native time. 

JIT added minimal overhead and did not increase as 
the number of threads increased. This indicates that Pin 
does not introduce any serial overhead for these bench-
marks; serial overhead would increase as more threads 
reduced the rest of the runtime. MemTrace added more 
overhead, more than doubling the running time. However, 
the overhead stayed the same or decreased as we added 
more threads, also showing that Pin preserves the pro-
gram’s parallelism.

In our final experiment, we compiled POV-Ray to 
use the new Intel AVX instructions, which extends SSE’s 
vector capabilities. We used the Intel SDE tool to emu-
late the new instructions. The speedup for two and four 
processors was 2.1x and 3.4x when executed on an Intel 
Core i7 processor with four cores. We could not compare 
this to native execution because Intel does not yet sell 
processors that support the new instructions. The Intel 

table 1. maxon cinebench rendering time in seconds  
for various pintools. 

Pintool 1 thread 2 threads 4 threads

Native 197 100 54

Probe 197 100 54

LocksAndWaits 205 107 62

JIT 237 121 65

InsCount 470 241 128

MemTrace 851 436 263

DataRace 17,443 9,892 6,153

MemError 2,795 1,536 823
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Figure 5. Scalability of instrumented parallel applications (a) 
Cinebench and (b) POV-Ray.
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SDE tool did not introduce any shared data or synchro-
nization, and, as expected, the scaling to four processors 
was excellent.

P
in was originally conceived as a tool for 
computer architecture analysis. A user 
community latched on to its flexible API and 
high performance, taking the tool into unfore-
seen domains like security, emulation, and 

parallel program analysis. We have learned that the inter-
actions between multiple threads of control are difficult 
to analyze at compile-time or to characterize with sam-
pling techniques, making instrumentation’s fine-grained, 
runtime analysis especially useful. Symbolic debuggers 
and hotspot profilers have been the primary tools for 
debugging and tuning sequential programs for the past 
30 years. However, these tools are not sufficient for par-
allel programs. The flexibility of instrumentation with 
Pin enables new types of analysis such as data race or 
deadlock detectors. Pin puts the power in the hands of 
developers to craft the analysis that is appropriate for their 
domain or even application. 
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