
computer 56

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE

Instrumentation is one tool for collecting the information
needed to understand programs. Instrumentation- based
tools typically insert extra code into a program to record
events during execution.1-4 The cost of executing the extra
code can be as low as a few cycles, enabling fine-grained
observation down to the instruction level.

Pin2 (www.pintool.org) is a software system that per-
forms runtime binary instrumentation of Linux and
Microsoft Windows applications. Pin’s aim is to provide
an instrumentation platform for building a wide variety of
program analysis tools, called pintools. By performing the
instrumentation on the binary at runtime, Pin eliminates
the need to modify or recompile the application’s source
and supports the instrumentation of programs that dy-
namically generate code.

INSTRUMENTATION
Pin provides a platform for building instrumentation

tools. A pintool consists of instrumentation, analysis,
and callback routines.1 Instrumentation routines inspect
the application’s instructions and insert calls to analysis
routines. Analysis routines are called when the program
executes an instrumented instruction and often perform
ancillary tasks. The program invokes callbacks when an
event occurs, for example, when it is about to exit.

Figure 1 shows a simple pintool that prints the memory
addresses of all data a program reads or writes. Instruc-

A
decade ago, systems with multiple proces-
sors were expensive and relatively rare; only
developers with highly specialized skills could
successfully parallelize server and scientific
applications to exploit the power of multipro-

cessor systems. In the past few years, multicore systems
have become pervasive, and more programmers want to
employ parallelism to wring the most performance out of
their applications.

Exploiting multiple cores introduces new correctness
and performance problems such as data races, deadlocks,
load balancing, and false sharing. Old problems such as
memory corruption become more difficult because par-
allel programs can be nondeterministic. Programmers
need a deeper understanding of their software’s dynamic
behavior to successfully make the transition from single
to multiple threads and processes.

Software instrumentation provides the
means to collect information on and effi-
ciently analyze parallel programs. Using
Pin, developers can build tools to detect
and examine dynamic behavior including
data races, memory system behavior, and
parallelizable loops.

Moshe Bach, Mark Charney, Robert Cohn, Elena Demikhovsky, Tevi Devor,
Kim Hazelwood, Aamer Jaleel, Chi-Keung Luk, Gail Lyons, Harish Patil, and Ady Tal,
Intel

AnAlyzing
PArAllel
ProgrAms
with Pin

#include <stdio.h>
#include “pin.H”
FILE trace;*
VOID Address(VOID * addr) { fprintf(trace,”%p\n”, addr); }
VOID Instruction(INS ins, VOID *v) {
 if (INS_IsMemoryRead(ins)) {
 INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(Address),
 IARG_MEMORYREAD_EA, IARG_END);
 }
 if (INS_IsMemoryWrite(ins)) {
 INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(Address),
 IARG_MEMORYWRITE_EA, IARG_END);
 }
}
VOID Fini(INT32 code, VOID *v) { fclose(trace); }
int main(int argc, char *argv[]) {
 PIN_Init(argc, argv);
 trace = fopen(“pinatrace.out”, “w”);
 INS_AddInstrumentFunction(Instruction, 0);
 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram();
 return 0;
}

57mArcH 2010

In Pin’s high-performance probe mode option, the
base overhead is near zero. The probe mode has a
limited set of callbacks available and restricts tools
to interposing wrapper routines for global functions.
Figure 2 shows a pintool’s fragment that wraps calls to
malloc so it can print the argument and return values.
Image is an instrumentation routine that the program
invokes every time a binary or shared library loads. It
searches the binary for a function called malloc and
replaces it with a call to malloc_wrap. When the pro-

tion is an instrumentation routine that Pin
calls the first time the program executes an
instruction, so the routine can specify how
it should be instrumented. If the instruc-
tion reads or writes memory, this example
pintool inserts a call to Address—an analy-
sis routine—and directs Pin to pass it the
memory reference’s effective address.
Immediately before a memory reference
executes, the program calls Address, which
prints the address to a file. The program in-
vokes a callback routine, Fini, when it exits.
Instrumentation and callback routines are
registered in the pintool’s main function.

Figure 1 demonstrates only a small part
of the Pin API. Whereas the example uses an
instrumentation routine that can only see a
single instruction at a time, Pin lets instru-
mentation routines see instruction blocks or
whole binaries. The argument to Address is
an effective address, but Pin provides much
more, including register contents (for ex-
ample, value of R9), the instruction pointer
(IP or PC), procedure argument values, and
constants. The only callback used in the
example is for program end, but Pin also
provides callbacks to notify a pintool about
shared library loads, thread creation, system
calls, Unix signals, and Microsoft Windows
exceptions.

Although the instrumentation in this
example is very simple, it is sufficient for
a variety of useful tools. Instead of writing
addresses to a file, a tool could feed the ad-
dresses to a software model of a cache and
compute the cache miss rate for the appli-
cation. By watching all the references to a
specific memory location, it is possible to
find an erroneous write through a pointer
that overwrites a value with 1/100th the
overhead of doing the same analysis in a
debugger.

Pin uses a just-in-time (JIT) compiler to
insert instrumentation into a running application. The
JIT compiler recompiles and instruments small chunks of
binary instructions immediately prior to executing them.
Pin stores the modified instructions in a software code
cache where they execute in lieu of the original applica-
tion instructions. The code cache allows Pin to generate
code regions once and reuse them for the remainder of
program execution, amortizing compilation costs. Pin’s
average base overhead is 30 percent, and user-inserted
instrumentation adds to the time.

Figure 1. Pintool for printing all program memory read and write addresses.

typedef void (*malloc_funptr_t)(size_t size);
malloc_funptr_t app_malloc;
VOID * malloc_wrap(size_t size) {
 void * ptr = app_malloc(size);
 printf(\”Malloc %d return %p\”, size, ptr);
return ptr;

}
VOID Image(IMG img, VOID *v) {
 RTN mallocRtn = RTN_FindByName(img, “malloc”);
 if (RTN_Valid(mallocRtn)) {
 app_malloc=
 (malloc_funptr_t)RTN_ReplaceProbed(mallocRtn,AFUNPTR(m
alloc_wrap));
 }
}

Figure 2. Pintool’s fragment for wrapping malloc.

COVER FE ATURE

computer 58

separate output file for each thread and retrieve the file
descriptor from thread-local storage.

Performance considerations
Correcting a parallel program by adding locks is usually

straightforward. However, a highly contended lock serializes
execution and leads to poor CPU utilization. Because applica-
tion threads execute analysis routines, a highly contended
lock in an analysis routine will also serialize the application’s
execution. The serialization increases the pintool’s over-
head when compared to the application’s uninstrumented
execution and might alter the parallel program’s behavior
drastically. Pintool authors must employ standard parallel
programming techniques to avoid excessive serialization.
They should use thread-local storage to avoid the need to
lock global storage. Instead of a single monolithic lock for a
data structure, they should use fine-grained locks.

False sharing is another pitfall in naïve pintools, occurring
when multiple threads access different parts of the same
cache line and at least one of them is a write. To maintain
memory coherency, the computer must copy the memory
from one CPU’s cache to another, even though data is not
truly shared. False sharing is less costly when CPUs operate
out of a shared cache, as is true for the four cores in the Intel
Core i7 processor. Developers can eliminate false sharing by
padding critical data structures to the size of a cache line or
rearranging the structures’ data layout.

Multithreaded versus
multiprocess instrumentation

Pin allows instrumentation of parallel programs that
use multiple threads and multiple cooperating processes.
The new thread executes the same instrumented code as
the other threads and accesses the same data. When a pro-
gram spawns a new process or a process exits, Pin notifies
the pintool. The pintool can choose to let the new process
execute natively or under its control. The new process will
have new code that the pintool must reinstrument. The
processes do not share pintool data; however, a pintool can
use OS-provided mechanisms for communication between
the parallel program’s instrumented processes.

EXAMPLE TOOLS
Developers can use various Pin-based tools to analyze

parallel program performance and correctness.

Intel Parallel Inspector
The Intel Parallel Inspector (http://software.intel.com/

en-us/intel-parallel-inspector) analyzes the multithreaded
programs’ execution to find memory and threading errors,
such as memory leaks, references to uninitialized data,
data races, and deadlocks. Intel Parallel Inspector uses
Pin to instrument the running program and collect the
information necessary to detect errors.

gram calls malloc, malloc_wrap is called instead,
which calls the application malloc, then prints the
argument and return value. To avoid infinite recur-
sion, the call to malloc from malloc_wrap should not
be redirected, so we instead call the function pointer
returned by RTN_ReplaceProbed. The data collected
from this tool could be used to find a program that in-
correctly freed the same memory twice or track down
some code that allocated too much memory.

In probe mode, the program binary is modified in
memory. Pin overwrites the entry point of procedures
with jumps (called probes) to dynamically generated in-
strumentation. This code can invoke analysis routines
or a replacement routine. When the replacement routine
needs to invoke the original function, it calls a copy of the
entry point (without the probe) and continues executing
the original program.

Instrumenting parallel programs
Instrumenting a parallel program is not very different

from instrumenting single-threaded programs. Pin provides
callbacks when a new thread or new process is created.
Analysis routines can be passed a thread ID so it is possible
to attribute recorded data—for example, a memory refer-
ence address—to the thread that performed the operation.

Instrumenting a multithreaded program does require
some special care by the tool writer. When a pintool
instruments a parallel program, the application threads
execute the calls to analysis functions. If the pintool in
Figure 1 is invoked on a multithreaded program, then all
the application threads can call the Address function
simultaneously.

The pintool author is responsible for making the
analysis functions thread-safe so they can be applied to
a multithreaded program. Writing a thread-safe analy-
sis routine is similar to writing a thread-safe routine in a
multithreaded program. Authors use locks to synchronize
references to shared data with other threads.

Pin also provides APIs for allocating and addressing
thread-local storage. For example, the Address function
in Figure 1 writes the program address to a file. The trace
variable points to a FILE descriptor, which all threads
share. It is not safe for multiple threads to write to FILE
simultaneously. To enable this pintool to correctly instru-
ment a multithreaded program, the Address function must
either have a lock around the call to fprintf or create a

In probe mode, Pin overwrites the
entry point of procedures with
jumps to dynamically generated
instrumentation.

59mArcH 2010

and record the wait time, synchronization object, and call
stack. Because the Intel Parallel Amplifier only instruments
synchronization routines and not every call and return,
it cannot maintain a shadow call stack. Instead, the in-
strumentation unwinds the stack every time it needs to
capture a call stack.

Intel Trace Analyzer and Collector
The Intel Trace Analyzer and Collector provides infor-

mation critical to understanding and optimizing cluster
performance by quickly finding performance bottlenecks
with Message Passing Interface (MPI) communication.
The tool presents a timeline showing when MPI mes-
sages are sent and received, and programmers can use
this information to improve the CPU utilization. The Intel
Trace Analyzer and Collector uses Pin’s probe mode to
instrument calls to the MPI library, collecting time stamps,
arguments, and other data. If a user requests call stack
information, a JIT-mode tool instruments call and return
instructions to maintain a shadow stack.

CMP$im
Memory system behavior is critical to parallel program

performance. Computational bandwidth increases faster
than memory bandwidth, especially for multicore systems.
Programmers must utilize as much bandwidth as possible
for programs to scale to many processors. Hardware-based
monitors can report summary statistics such as memory
references and cache misses; however, they are limited to
the existing cache hierarchy and are not well suited for
collecting more detailed information such as the degree
of cache line sharing or the frequency of cache misses
because of false sharing.

CMP$im6 uses Pin to collect the memory addresses of
multithreaded and multiprocessor programs, then uses
a memory system’s software model to analyze program
behavior. It reports miss rates, cache line reuse and shar-
ing, and coherence traffic, and its versatile memory system
model configuration can predict future systems’ applica-
tion performance. While CMP$im is not publicly available,
the Pin distribution includes the source for a simple cache
model, dcache.cpp.

PinPlay
Debugging and analyzing parallel programs is difficult

because their execution is not deterministic. The threads’

A data race occurs when two threads access the same
data, at least one access is a write, and there is no syn-
chronization (for example, locking) between accesses.5
Unsynchronized variable writes usually are a program-
ming error and can cause nondeterministic behavior.

To detect data races, Parallel Inspector uses Pin to in-
strument all machine instructions in the program that
reference memory and records the effective addresses
(similar to Figure 1). It also instruments calls to thread syn-
chronization APIs. By examining the effective addresses,
Intel Parallel Inspector can detect when multiple threads
access the same data. The synchronization API’s instru-
mentation lets Intel Parallel Inspector determine if the
memory accesses were synchronized. To help the pro-
grammer identify the cause of the data race, Intel Parallel
Inspector shows the source lines and the call stacks lead-
ing to the problematic memory references.

Pin provides an API for mapping a machine instruction
address to the corresponding source line and file. A debug-
ger provides a call stack by unwinding stack frames and
recovering the procedure call return addresses from the
stack. Error-checking tools need to record the call stack for
every memory reference because the tools might not de-
termine until later whether that reference caused an error.
Unwinding the call stack for every reference is expensive.
Instead, tools typically keep a shadow call stack. A pintool
instruments all call instructions, saving the stack pointer’s
current value and the called procedure on the shadow
stack. Procedure return instructions are also instrumented,
popping off enough shadow stack frames to resynchronize
with the stack pointer’s current value.

Intel Parallel Amplifier
The Intel Parallel Amplifier (http://software.intel.com/

en-us/intel-parallel-amplifier) performs three types of anal-
ysis to help programmers improve program performance:
hotspots, concurrency, and locks and waits. Hotspots at-
tribute time to source lines and call stacks, identifying the
parts of the programs that would benefit from tuning and
parallelism. Concurrency measures the CPUs’ utilization,
giving whole program and per-function summaries. Locks
and waits measures the time multithreaded programs
spend waiting on locks, attributing time to synchronization
objects and source lines. Identifying locks responsible for
wait time and the associated source lines helps program-
mers improve a parallel program’s CPU utilization.

Hotspot and concurrency analysis data comes from
sampling. Intel Parallel Amplifier uses Pin to instrument
the application to collect data for the locks and waits analy-
sis. Capturing accurate timing data requires low overhead
instrumentation. The locks and waits analysis uses Pin’s
probe mode to replace calls to synchronization APIs with
wrapper functions, as Figure 2 demonstrates. The wrap-
per functions call the original synchronization function

Computational bandwidth increases
faster than memory bandwidth,
especially for multicore systems.

COVER FE ATURE

computer 60

instruction granularity, which is insufficient for parallel
programming because many programs are parallelized
at the loop level.

To meet this need, developers created the Pin-based
Prospector tool,10 which discovers potential parallelism
in serial programs by loop and data- dependence profil-
ing. Prospector provides loop execution profiles such
as trip counts and the number of instructions executed
inside loops. It also dynamically detects loop-carried
data dependencies, which must be preserved during the
parallelization process. Programmers receive reports
on candidate loops for parallelization and can manu-
ally parallelize them with systems such as OpenMP
(http://openmp.org) and Threading Building Blocks.11 In
addition to the profiler, Prospector provides several tools
for visualizing and interpreting the profiling results.

Figure 3 shows the results of applying Prospector to the
cactusADM program in the SPEC2006 benchmark suite.
Figure 3a is the call graph displayed by Prospector. One of
the functions, CCTKi_ScheduleTraverseGHExtensions,
is highlighted because it contains a parallelizable loop.
Figure 3b is this function’s loop graph.

Intel Software Development Emulator
The Intel Software Development Emulator, or Intel SDE

(www.intel.com/software/sde), is a user-level functional
emulator for new instructions in the Intel64 instruction
set built on Pin. Intel SDE supports emulation and debug-
ging of multithreaded programs that use the Intel AVX
(www.intel.com/software/avx), AES, and SSE4 instruction
set extensions.

Whereas most tools use Pin to observe a program’s ex-
ecution, Intel SDE uses Pin to alter the program while it is
running. During instrumentation, it deletes all instructions
that must be emulated and replaces them with calls to
functions that emulate the instruction.

relative progress can change in every run of the program,
possibly changing the results. Even single-threaded pro-
gram execution is not deterministic because of behavior
changes in certain system calls (for example, gettimeof-
day()) and stack and shared library load locations.

PinPlay is a Pin-based system for user-level capture and
deterministic replay of multithreaded programs under Pin.
The program first runs under the control of a Pin-based
logging tool, which captures all the system call side effects7
and inter-thread shared-memory dependencies.8 Another
Pin-based tool can replay the log, exactly reproducing the
recorded execution by loading system call side effects
and possibly delaying threads to satisfy recorded shared-
memory dependencies.

Replaying a previously captured log by itself is not very
useful. A pintool that instruments a program execution
can also instrument a PinPlay log replay. The tool run-
ning off a PinPlay log sees the same program behavior
on multiple runs, making the analysis deterministic. The
program can also replay a PinPlay log while connected
to a debugger, making multithreaded program debugging
deterministic. As long as the PinPlay logger can capture a
bug once, the behavior can repeat exactly multiple times
with replay under a debugger. Future releases of Pin will
include PinPlay.

Prospector
Compilers are ideal tools for exploiting parallelism

because they can potentially perform automatic paral-
lelization. However, even state-of-the-art compilers miss
many parallelization opportunities in C/C++ programs,
and as a result, programmers are forced to manually paral-
lelize applications. The success of manual parallelization
relies on execution profiler quality. Unfortunately, popu-
lar execution profilers, such as Gprof9 and Dev 8 Partner
(www.compuware.com), profile programs at function or

bench_staggeredleapfrog2_<4083f0> Util_StrCmpi<42e8c0> CCTK_GroupIndex<41fcc0> CCTK_VarIndex<41fa90> CCTKi_TriggerSaysGo<434ba0>

CCTKi_ScheduleTraverseGHExtensions<42c180>:587

bench_staggeredleapfrog1a_ts_<407730> LapseGaussian<452590> InitialFlat<450790> CartGrid3D<44d940>

bench_staggeredleapfrog2_<4083f0>

regex_compile<412f00>

PUGH_ReductionMaxVal<4552d0>Util_StrCmpi<42e8c0>

CCTK_VarIndex<41fa90>STR_cmpi<438b00>

IOBasic_WriteInfo<481a30>

PUGH_ReductionGVs<457b80>CCTK_GroupIndex<41fcc0>

re_compile_fastmap<415de0>

bench_staggeredleapfrog1a_ts_<407730>CCTKi_TriggerSaysGo<434ba0>

PUGH_ReductionMinVal<455f50>

re_search_2<418d10>

re_match_2_internal<416510>

CCTKi_ScheduleTraverseGHExtensions<42c180>

LapseGaussian<452590>InitialFlat<450790> CartGrid3D<44d940>

ParameterSetSimple<431c90>

(b)

(a)

Figure 3. Visualization of Prospector’s results: (a) call graph and (b) loop graph.

61mArcH 2010

the highest overhead—it is a GUI application that has a
large amount of low trip count code. Microsoft Excel is
also a GUI application, but the workload allows a large
amount of idle time, which hides overhead introduced
by instrumentation.

Figure 4b shows slowdown for heavyweight tools.
Like MemTrace, the MemError and DataRace tools pri-
marily analyze memory references. DataRace records
each memory address, but most of the overhead lies in
the analysis—not address recording—explaining the
higher overhead. MemError is the memory error analy-
sis tool included in Intel Parallel Inspector. It checks
for references to unallocated or uninitialized data.
Whereas DataRace buffers addresses and checks them
in batches, this tool immediately checks every address.

Figure 4b demonstrates that the slowdown for execut-
ing the program with Pin and no instrumentation (JIT)
is small compared to the tools that do something useful
(MemError and DataRace), and the time for the JIT config-
uration is not a good predictor for heavyweight tool time.
Therefore, developers of commercial pintools generally
focus on reducing the overhead of their own instrumenta-
tion routines, and the overhead of Pin itself is quite low
by comparison.

Intel SDE is primarily a tool for debugging programs
that use new instructions before the corresponding hard-
ware exists. However, developers also can combine it with
other tools to study performance. For example, combining
Intel SDE and CMP$im lets developers study the memory
system behavior of programs that use new instructions.

PERFORMANCE AND SCALABILITY
Raw performance and scalability are both important

properties when analyzing parallel applications. Pin’s in-
strumentation performance is highly tied to the running
application and even more so to the instrumentation rou-
tines added by the user. Applications running under the
control of Pin scale as well as they do when running na-
tively, and inserting heavy instrumentation code reduces
this scalability.

Benchmarks and system details
For evaluation, we used a variety of workloads.

Maxon Cinebench R10 is a photo-rendering workload
that renders an image using a 3D scene file. POV-Ray is
a publicly available ray-tracing package (www.povray.
org). The SPEC benchmarks represent a suite of stan-
dardized workloads (www.spec.org). Finally, Illustrator
and Excel are GUI applications that were exercised using
Visual Test.

We ran our experiments on an Intel Xeon RW5580 (Intel
Core i7) processor. The system has two sockets with quad-
core processors and 6 Gbytes of memory and runs a 64-bit
Windows 2003 Server with SP2. We disabled hyperthread-
ing to simplify the scalability analysis, limiting the system
to eight cores.

Runtime overhead
We first present the performance of a variety of tools

that cover the spectrum of actual use of Pin from simple
analysis to heavyweight tools with complex runtime
analysis. Figure 4 shows the slowdown for various tools
normalized to native execution.

The JIT configuration in Figure 4a executes the applica-
tion under control of the JIT, with no instrumentation. It
represents a lower bound for lightweight tools that need
the observability of JIT-mode execution. BBCount intro-
duces one counter increment per basic block. It is a lower
bound for tools that only observe control flow. Its overhead
increases as the average number of instructions per branch
shrinks.

MemTrace records each memory address accessed
by a thread in a thread-private buffer. This tool’s source
is in the Pin distribution. Cache simulators, memory
corruption detectors, and data race detectors need to
observe all memory addresses an application references,
and MemTrace serves as a lower bound on their over-
head. For these lightweight tools, Adobe Illustrator has

Sp
ec

In
t3

2

Sp
ec

In
t6

4

Sp
ec

IFp
32

Sp
ec

IFP
64

Illu
str

at
or

Ex
ce

l

Po
vra

y

Cin
eb

en
ch

10x
20x
30x
40x
50x
60x
70x
80x

0x

(b)

(a)

90x

Slo
wd

ow
n

Sp
ec

In
t3

2

Sp
ec

In
t6

4

Sp
ec

IFp
32

Sp
ec

IFP
64

Illu
str

at
or

Ex
ce

l

Po
vra

y

Cin
eb

en
ch

1x
2x
3x
4x
5x
6x
7x
8x

0x

9x

Slo
wd

ow
n

MemTrace
MemError
DataRace

JIT
BBCount
MemTrace

Figure 4. Slowdowns for a variety of tools from (a)
lightweight analysis to (b) heavyweight analysis, normalized
to native execution times.

COVER FE ATURE

computer 62

Scalable workload performance
We next explored Pin’s performance scalability as it

applies to additional threads and resources. Table 1 sum-
marizes the time to render the Cinebench scene in seconds
for various tools and numbers of threads. We ran the work-
load with one, two, and four rendering threads, setting the
affinity to ensure that each thread was assigned its own
CPU. For the two- and four-thread experiments, we set
the affinity to place all the rendering threads on the same
socket. This placement performs better than using multiple
sockets because it lets all threads share the last-level cache.
Cross-socket data sharing uses the memory bus, which is
dramatically slower.

In Table 1, Native represents running the application
without Pin. Probe represents executing the application

under the control of Pin in probe mode with no instrumen-
tation. As expected, there is no overhead. LocksAndWaits
is a probe-mode tool that instruments synchronization
APIs and has relatively low overhead. JIT represents run-
ning the application in JIT mode with no instrumentation.
The InsCount tool counts the number of instructions ex-
ecuted by adding instrumentation to every basic block to
update the instruction count. Compared to JIT, InsCount
overhead comes from the additional JIT time to generate
instrumentation and maintain the counter. Finally, Mem-
Trace, DataRace, and MemError represent high overhead
tools as before. As Table 1 indicates, performance improves
by nearly 4X with four threads.

Figure 5a shows the scaling in CPU time for a variety
of configurations when running Cinebench. For each con-
figuration, we normalize the time for two and four threads
to the time for one thread for the same configuration. The
native application scales well, achieving a 3.5x speedup
on four processors. Figure 4b shows that complex anal-
ysis adds overhead, but the instrumented application is
expected to scale with the addition of more threads. Run-
ning under the control of Pin with no instrumentation (JIT)
achieves scalability similar to native. For the heavyweight
tools, there is a slight drop off in scalability. For MemTrace,
limited memory bandwidth causes the reduced scalability.
The other tools do more work per address, and memory
bandwidth is less of a problem, but there is contention
for tool-specific data structures. Figure 5b demonstrates
similar trends in the POV-Ray benchmark. The native
performance and JIT execution performance have almost
perfect scaling. Instrumentation decreases the scaling.

Next, we explored the scalability of the MemTrace pin-
tool when applied to the SPEC OMP2001 benchmarks. We
varied the number of application threads from one to four,
measured the time to execute under the control of Pin with
no tool and with the MemTrace pintool, and normalized
overhead to the native time.

JIT added minimal overhead and did not increase as
the number of threads increased. This indicates that Pin
does not introduce any serial overhead for these bench-
marks; serial overhead would increase as more threads
reduced the rest of the runtime. MemTrace added more
overhead, more than doubling the running time. However,
the overhead stayed the same or decreased as we added
more threads, also showing that Pin preserves the pro-
gram’s parallelism.

In our final experiment, we compiled POV-Ray to
use the new Intel AVX instructions, which extends SSE’s
vector capabilities. We used the Intel SDE tool to emu-
late the new instructions. The speedup for two and four
processors was 2.1x and 3.4x when executed on an Intel
Core i7 processor with four cores. We could not compare
this to native execution because Intel does not yet sell
processors that support the new instructions. The Intel

table 1. maxon cinebench rendering time in seconds
for various pintools.

Pintool 1 thread 2 threads 4 threads

Native 197 100 54

Probe 197 100 54

LocksAndWaits 205 107 62

JIT 237 121 65

InsCount 470 241 128

MemTrace 851 436 263

DataRace 17,443 9,892 6,153

MemError 2,795 1,536 823

0.5x
1.0x
1.5x
2.0x
2.5x
3.0x
3.5x

0.0x
(a)

(b)

4.0x

Sp
ee

du
p

One thread Two threads

0.5x
1.0x
1.5x
2.0x
2.5x
3.0x
3.5x
4.0x

0.0x

4.5x

Sp
ee

du
p

One thread Two threads

Four threads

Four threads

Native
Probe
LocksAndWaits
JIT
BBCount_mt
MemTrace
MemError
DataRace

Figure 5. Scalability of instrumented parallel applications (a)
Cinebench and (b) POV-Ray.

63mArcH 2010

Proc. 6th Int’l Symp. Code Generation and Optimization,
ACM Press, 2010, pp. 1-10.

 9. S.L. Graham, P.B. Kessler, and M.K. McKusick, “Gprof: A
Call Graph Execution Profiler,” Proc. SIGPLAN 82 Symp.
Compiler Construction, ACM Press, 1982, pp. 120-126.

 10. M. Kim, C.-K. Luk, and H. Kim, “Prospector: Discover-
ing Parallelism via Dynamic Data-Dependence Profiling,”
tech. report TR-2009-001, Georgia Inst. of Technology,
2009.

 11. J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.

Moshe (Maury) Bach leads the binary instrumentation
team at Intel’s Israel Design Center. He received a PhD in
computing science from Columbia University. Contact him
at mbach@iil.intel.com.

Mark Charney is a principal engineer at Intel. He received
a PhD in electrical engineering from Cornell University.
Contact him at mark.charney@intel.com.

Robert Cohn is a senior principal engineer at Intel. He re-
ceived a PhD in computer science from Carnegie Mellon
University. Contact him at robert.s.cohn@intel.com.

Elena Demikhovsky is a senior software engineer at In-
tel’s Israel Design Center. She received an MSc in computer
science from Belarusian State University of Informatics
and Radioelectronics. Contact her at elena.demikhovsky@
intel.com.

Tevi Devor is a senior software engineer at Intel. He re-
ceived an MSc in computer science from Queens University,
Kingston, Canada. Contact him at tevi.devor@intel.com.

Kim Hazelwood is an assistant professor at the University
of Virginia and a faculty consultant for Intel. She received a
PhD in computer science from Harvard University. Contact
her at hazelwood@virginia.edu.

Aamer Jaleel is a hardware engineer at Intel. He received a
PhD in electrical engineering from the University of Mary-
land. Contact him at aamer.jaleel@intel.com.

Chi-Keung Luk is a senior staff engineer at Intel. He re-
ceived a PhD in computer science from the University of
Toronto. Contact him at chi-keung.luk@intel.com.

Gail Lyons is a software engineer at Intel. She received an
MSc in computer science from Boston University. Contact
her at gail.lyons@intel.com.

Harish Patil is a senior staff engineer at Intel. He received a
PhD in computer science from the University of Wisconsin,
Madison. Contact him at harish.patil@intel.com.

Ady Tal is a software engineer and development team
member from Intel. He received an MSc in computer sci-
ence from The Technion—Israeli Institute of Technology.
Contact him at ady.tal@intel.com.

SDE tool did not introduce any shared data or synchro-
nization, and, as expected, the scaling to four processors
was excellent.

P
in was originally conceived as a tool for
computer architecture analysis. A user
community latched on to its flexible API and
high performance, taking the tool into unfore-
seen domains like security, emulation, and

parallel program analysis. We have learned that the inter-
actions between multiple threads of control are difficult
to analyze at compile-time or to characterize with sam-
pling techniques, making instrumentation’s fine-grained,
runtime analysis especially useful. Symbolic debuggers
and hotspot profilers have been the primary tools for
debugging and tuning sequential programs for the past
30 years. However, these tools are not sufficient for par-
allel programs. The flexibility of instrumentation with
Pin enables new types of analysis such as data race or
deadlock detectors. Pin puts the power in the hands of
developers to craft the analysis that is appropriate for their
domain or even application.

Acknowledgments
We thank Douglas Armstrong, Zhiqiang Ma, Paul Petersen,
and Ronen Zohar for their assistance in writing this ar-
ticle as well as the entire Pin team for making the article
possible.

References
 1. A. Srivastava and A. Eustace, “ATOM: A System for Building

Customized Program Analysis Tools,” SIGPLAN Notices,
vol. 39, no. 4, ACM Press, 2004, pp. 528-539.

 2. C.-K. Luk et al., “Pin: Building Customized Program Analy-
sis Tools with Dynamic Instrumentation,” ACM SIGPLAN
Conf. Programming Language Design and Implementation,
ACM Press, 2005, pp. 190-200.

 3. V. Kiriansky, D. Bruening, and S.P. Amarasinghe, “Secure
Execution via Program Shepherding,” Proc. 11th Usenix
Security Symp., Usenix, 2002, pp. 191-206.

 4. N. Nethercote and J. Seward, “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation,” Proc.
ACM SIGPLAN Conf. Programming Language Design and
Implementation, ACM Press, 2007, pp. 89-100.

 5. U. Banerjee et al., “A Theory of Data Race Detection,” Proc.
Workshop Parallel and Distributed Systems: Testing and
Debugging, ACM Press, 2006, pp. 69-78.

 6. A. Jaleel et al., “CMP$im: A Pin-Based On-the-Fly Multi-
core Cache Simulator,” Proc. 4th Ann. Workshop Modeling,
Benchmarking and Simulation, 2008, pp. 28-36.

 7. S. Narayanasamy et al., “Automatic Logging of Operating
System Effects to Guide Application-Level Architecture
Simulation,” Proc. Joint Int’l Conf. Measurement and Model-
ing of Computer Systems, ACM Press, 2006, pp. 216-227.

 8. H. Patil et al., “PinPlay: A Framework for Deterministic
Replay and Reproducible Analysis of Parallel Programs,”

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

