
Cross Binary Simulation Points

Erez Perelman† Jeremy Lau† Harish Patil‡ Aamer Jaleel‡
Greg Hamerly� Brad Calder†∗

†Department of Computer Science and Engineering, University of California, San Diego
‡Intel Corporation

∗Microsoft Corporation
�Department of Computer Science, Baylor University

{eperelma,jl,calder}@cs.ucsd.edu
{harish.patil,aamer.jaleel}@intel.com

greg hamerly@baylor.edu

Abstract

Architectures are usually compared by running the same
workload on each architecture and comparing performance.
When a single compiled binary of a program is executed on
many different architectures, techniques like SimPoint can be
used to find a small set of samples that represent the majority
of the program’s execution. Architectures can be compared
by simulating their behavior on the code samples selected
by SimPoint, to quickly determine which architecture has the
best performance.

Architectural design space exploration becomes more dif-
ficult when different binaries must be used for the same pro-
gram. These cases arise when evaluating architectures that
include ISA extensions, and when evaluating compiler opti-
mizations. This problem domain is the focus of our paper.
When multiple binaries are used to evaluate a program, one
approach is to create a separate set of simulation points for
each binary. This approach works reasonably well for many
applications, but breaks down when the simulation points
chosen for the different binaries emphasize different parts of
the program’s execution. This problem can be avoided if sim-
ulation points are selected consistently across the different
binaries, to ensure that the same parts of program execution
are represented in all binaries.

In this paper we present an approach that finds a single
set of simulation points to be used across all binaries for a
single program. This allows for simulation of the same parts
of program execution despite changes in the binary due to ISA
changes or compiler optimizations.

1 Introduction
Modern computer architecture research requires understand-
ing the cycle level behavior of a processor as it executes a
program. To gain this understanding, researchers typically

employ detailed simulators that model the processor’s cycle-
level behavior. Unfortunately, this level of detail comes at
the cost of speed. Even on the fastest simulators, modeling
the full execution of a single benchmark can take weeks or
months to complete, and nearly all industry standard bench-
marks require the execution of a suite of programs. Therefore,
instead of simulating entire programs, a few small samples of
each program’s execution are sampled instead. The samples
we focus on are in the range of 10 to 500 million instructions.

One of the challenges is to determine which simulation
samples most accurately represent the program’s full exe-
cution. To address this problem we created a tool called
SimPoint [11, 16] that uses clustering algorithms from ma-
chine learning to automatically find repetitive patterns in a
program’s execution. By simulating one representative of
each repetitive behavior pattern, simulation time could be
reduced to minutes instead of weeks for standard bench-
mark programs, with very little accuracy cost. Several re-
searchers have shown the SimPoint approach works well
when exploring architecture designs with the same program
binary [6, 11, 16, 17], but we have not yet seen a study fo-
cused on using SimPoint to compare the results of multiple
binaries (compilations) of the same source code.

There are three main scenarios we have encountered
where it is necessary to compare multiple binaries during ar-
chitecture simulation. In these scenarios, we are using the
same source code for a program, producing different binaries
from the source, and running the binaries with the same input.
The binaries are created using different compilers and/or dif-
ferent optimization levels. All three scenarios involve quickly
evaluating architecture design decisions, which requires rep-
resentative architecture simulation.

The first area deals with ISA extensions, where a new bi-
nary is created that uses some ISA extensions, such as the
64-bit x86 extensions. In this case, we must compare the per-

1

formance of the original binary, which does not use the exten-
sions, to the performance of the new binary, which does use
the extensions. For example, one of the questions Intel archi-
tects want to answer is how their new processors will perform
with 32-bit (IA32) and 64-bit (Intel64) binaries, and what is
the difference in performance. This requires comparing the
simulated performance of two different binaries. The second
case deals with examining completely different architectures,
such as Itanium and 64-bit x86. In this case, different com-
pilers will be used, and it is important to identify the same
parts of execution for the simulation samples. Finally, for a
new architecture, the compiler team needs to evaluate the per-
formance effects of compiler optimizations using simulation,
before working prototypes of the processor are available. In
this case, a compiler may use the same ISA but produce dif-
ferent binaries as optimizations are enabled, disabled, and re-
ordered.

We consider two approaches for representative simulation
for multiple binaries compiled from the same source. The
first approach applies the prior SimPoint approach separately
on each binary. SimPoint examines an execution trace and
groups similar portions of execution into phases (clusters).
The most representative interval from each phase is chosen
as the simulation point to represent that cluster. This ap-
proach provides very accurate results when a single binary
is used across different architectures, because the same sim-
ulation points are being simulated for each architecture, and
each simulation point always represents the same portion of
execution.

Using SimPoint with multiple binaries for a single pro-
gram can result in different clusterings for each binary. This
means that part of a program’s execution in one binary may
be assigned to a different phase in another binary for the
same program, so phases may be weighted inconsistently.
More importantly, the simulation points chosen in each binary
might represent different behaviors. Results in Section 5.2.1
show the effects of these issues, which are especially impor-
tant when determining which (binary, architecture) pair per-
forms the best.

To address this issue, we propose a technique we call
Cross Binary SimPoint. This approach finds simulation re-
gions that are semantically the same across multiple binaries,
and uses those regions to compare program performance. For
this approach, we profile each binary with the input used for
simulation, and identify a set of points in each binary that can
be mapped to any other binary in the set. These mappable
points are instructions in each binary corresponding to proce-
dure calls and loop branches that can be consistently found in
all of the binaries examined. These mappable points are po-
tential boundaries for simulation regions. We break the exe-
cution intervals passed to SimPoint on these mappable points,
and we use SimPoint to choose a set of simulation points we
can map across all of the binaries. Then we use these mapped
simulation points to compare performance across binaries.

The contributions of our paper are:

• We describe the need for a sampled simulation infrastruc-
ture that is accurate across multiple binaries for the same
program.

• We examine the accuracy of the standard SimPoint ap-
proach when comparing the performance of multiple bi-
nary representations of a program.

• We present a new approach that picks mappable simulation
points that can be identified across binaries of the same
program. The simulation points may execute varying num-
bers of instructions, but they are semantically equivalent.
This approach is accurate, and compares the same parts of
execution across binaries, unlike the per-binary SimPoint
approach.

2 Picking Per-Binary Simulation
Points

In this section we give an overview of the current SimPoint
3.0 approach [2, 16], and how it is used to compare the per-
formance of a given program across multiple compilations
(binaries).

2.1 Breaking Execution into Intervals
An interval is a section of continuous execution (a slice in
time) of a program’s execution. All intervals are assumed to
be non-overlapping, so SimPoint breaks a program’s execu-
tion into contiguous non-overlapping intervals. The current
SimPoint approach uses intervals of the same size. Intervals
are measured by the number of instructions committed in an
interval (e.g., interval sizes of 1, 10, or 100 million instruc-
tions were used in [13]). We call this the Fixed Length Inter-
val (FLI) approach. This is the approach SimPoint promotes.
In this section, we use this FLI approach with an interval size
of 100 million instructions for picking per-binary simulation
points.

SimPoint 3.0 provides support for Variable Length In-
tervals (VLIs), which allows intervals to represent different
amounts of executed instructions as described in [4, 5]. Prior
work has not proposed a good method to break a program into
VLIs for architecture simulation. The approach we provide
in this paper, examined in Section 3, provides the first usable
approach for breaking programs into VLIs for SimPoint.

2.2 Basic Block Vectors
Each interval is represented by a frequency vector, which rep-
resents the program’s execution during that interval. One type
of frequency vector that is commonly used with SimPoint is
the Basic Block Vector (BBV), which is a list of static ba-
sic blocks [15]. When tracking basic block usage with fre-
quency vectors, SimPoint counts the number of times each
basic block in the program has been entered in the current
interval, and it records that count in the frequency vector,
weighted by the number of instructions in the basic block.

2

Each element in the frequency vector is a count of how many
times the corresponding basic block has been entered in that
interval of execution, multiplied by the number of instructions
in that basic block.

We use basic block vectors (BBV) for the results in this
paper. The intuition behind this is that the behavior of the
program at a given time is directly related to the code exe-
cuted during that interval [15]. SimPoint uses the basic block
vectors as signatures for each interval of execution: each vec-
tor tells us what portions of code are executed, and how fre-
quently those portions of code are executed. By comparing
the BBVs of two intervals, SimPoint can evaluate the similar-
ity of the two intervals. If two intervals have similar BBVs,
then the two intervals spend about the same amount of time in
roughly the same code, and therefore we expect the behavior
of those two intervals to be similar.

2.3 The SimPoint Approach
We now give a brief summary of how SimPoint works with
fixed length intervals of basic block vectors to pick simula-
tion points. The following steps summarize SimPoint’s phase
clustering algorithm at a high level. We refer the interested
reader to [16] for a more detailed description of each step.

1. Profile the program by dividing the program’s execution
into contiguous intervals, and record a frequency vector
for each interval. Normalize each frequency vector so that
the sum of all the elements equals 1.

2. Reduce the dimensionality of the frequency vector data to
a smaller number of dimensions using random linear pro-
jection.

3. Run the k-means clustering algorithm on the reduced-
dimension data for a set of k values.

4. Choose from among these different clusterings a well-
formed clustering that also has a small number of clusters.
To compare and evaluate the different clusters formed for
different values of k, SimPoint uses the Bayesian Informa-
tion Criterion (BIC) [12] as a measure of the “goodness of
fit” of a clustering to a dataset. SimPoint chooses the clus-
tering with the smallest k, such that its BIC score is close
to the best score that has been seen. The chosen clustering
represents the final grouping of intervals into phases.

5. Select the simulation points for the chosen clustering. For
each cluster, SimPoint chooses one representative interval
that will be simulated in detail to represent the behavior of
the whole cluster. By simulating only one representative
interval per phase SimPoint can extrapolate and capture
the behavior of the entire program. To choose a represen-
tative, SimPoint picks the interval in each cluster that is
closest to the centroid (center) of each cluster. Each sim-
ulation point also has an associated weight, which reflects
the fraction of executed instructions that cluster represents.

6. With the weights and the detailed simulation results of
each simulation point, SimPoint computes a weighted av-
erage for the architecture metric of interest (CPI, miss rate,

etc.). This weighted average of the simulation points gives
an accurate representation of the complete execution of the
program/input pair.

2.4 Using Per Binary Simulation Points

The focus of this paper is on architecture studies we have en-
countered that require us to compare multiple binaries for the
same program (no source code changes) for the same input
using detailed simulation.

The first approach we examine is to create a separate set
of simulation points for each binary being compared for a
program. This allows SimPoint to select a subset of the full
execution that approximates the overall behavior of the full
execution. This approach can be used to compare simulation
results across binaries of the same program, but issues can
arise, as described below.

SimPoint tries to capture the majority of behaviors during
execution to create a faithful estimate of the complete execu-
tion, but it cannot capture every behavior. This creates bias
(error). Prior work indicates the bias is low [6], but for studies
involving multiple binaries, the bias across the different bina-
ries examined must be consistent. Prior work has shown that
this bias (relative error) is consistent for a single binary across
many different architectures [13], but that work only consid-
ered the case where the same simulation points are used with
the same binary across different architectures.

The focus of this work is to use different binaries (com-
piled from the same source) across different architectures. If
we choose different simulation points for each binary, then
the same behaviors may not be captured in the simulation
points across the different binaries. This can result in different
biases used for each binary, which can cause additional inac-
curacies when trying to compare the performance of many
architecture/binary combinations.

Related to this is a problem of representing all the unique
behaviors a program exhibits with a small number of phases
(each phase having a single simulation point representative).
If there are more unique behaviors than allowed phases (since
an architect may limit the number of simulation points used),
then SimPoint cannot represent all the behaviors as separate
phases. Therefore, some unique behaviors must be grouped
into the same phase. If these groupings are not performed
consistently across different binaries, then simulation points
from one binary will represent different combinations of
unique behaviors than simulation points from another binary.
Simulation results using different simulation points can not be
meaningfully compared, since the different simulation points
may focus on different behaviors.

Both of these issues are addressed by the next approach
we examine, which finds a single set of simulation points that
can be used across all of the binaries, ensuring that the same
behaviors are simulated for each binary.

3

3 Picking a Single Set of Cross-Binary
Simulation Points

In this section we describe our approach for picking the same
simulation point across a set of binaries for a program/input
pair, and how we use these mappable simulation points and
weight them appropriately.

3.1 Why Variable Length Intervals Are Necessary
In picking a single set of simulation points to represent exe-
cution across multiple binaries, we cannot just use the simu-
lation points chosen from the fixed length approach described
in the prior section. For that approach, the start of a simula-
tion point is identified by when it occurs during execution, in
terms of dynamic instruction count.

One problem is that a simulation point in binary A may
start at dynamic instruction count X , but the semantically
equivalent part of execution in binary B starts at dynamic
instruction count Y (and X �= Y). The other problem is
that the semantically-equivalent sample for binary A may ex-
ecute a different number of instructions than the same sample
in binary B. Therefore, we cannot use dynamic instruction
counts to identify the beginning and end of a sample. Instead,
we must find samples whose boundaries correlate with source
code so we can find the same sample across the execution of
two different binaries.

3.2 Steps for Mappable Simulation Points
We now describe at a high level our mappable simulation
point algorithm, which has the following steps:

1. Create Call and Branch Profile for Each Binary: Gen-
erate a profile for each binary for the input being exam-
ined. This along with symbol information will be used to
find the set of mappable points.

2. Find a Set of Mappable Points that Exist in All Bi-
naries: Use symbol information, the profile counts, and
source line information to find a set of instructions in the
binaries that exist in all of the binaries, and serve the same
purpose (procedure entry points, loop back edges, loop en-
try points, etc).

3. Create Variable Length Intervals Using Mappable
Points: Use the mappable points to partition execution for
one input into variable length intervals (VLIs), where both
the start and end of each VLI are mappable points. This
allows us to accurately map the intervals across all of the
binaries.

4. Pick Simulation Points for the Primary Binary: Pick a
set of simulation points by running SimPoint on variable-
length frequency vectors collected from one of the binaries
(the “primary binary”).

5. Map the Simulation Points to All Binaries: Map the
simulation points chosen from the primary binary to all
of the other binaries, creating mappable simulation points
across all of the binaries that semantically represent the
same part of execution.

6. Recalculate Weights for Mapped Simulation Points:
Simulation results for each SimPoint in each binary must
be appropriately weighted by the size of its cluster in each
binary.

We now go through each of these steps in more detail.

3.2.1 Create Call and Branch Profile for Each Binary
We generate a profile for each binary for the input being ex-
amined using Pin [9], a dynamic instrumentation system. We
then find instructions in the binaries that are mappable; i.e.
they exist across all binaries that mark the same exact point
of execution. This will be used to locate the mappable points
for each binary.

For each binary we profile all procedure entry points and
loop branches and keep track of the total number of times
each code structure is executed. For procedures we simply
keep track of how many times each procedure is executed for
the entire execution. Loops on the other hand can be consid-
ered as two entities: a loop entry point and the loop body. For
the loop entry points we capture how many times the loop
has been entered regardless of how many iterations the loop
executes each time it is entered. This provides a coarse rep-
resentation of loops, similar to procedures.

We also keep track of how many times the loop body ex-
ecutes. This is the number of times the loop has iterated over
the entire execution. Each time a loop is entered we increment
the loop entry count once and increment the loop body count
by the number of times the loop iterates. The loop body count
provides a much more detailed picture of the loop execution
and is typically much larger than the loop entry count.

We want to break down loops like this so we can use either
the entry point into a loop or specific loop iteration branches
as mappable points. This provides a larger set of mappable
points to choose from as will become apparent in the follow-
ing step.

3.2.2 Find a Set of Mappable Points that Exist in All Bi-
naries

We use the mappable points to partition the execution of a
single input into variable length intervals (VLIs), where each
interval starts and ends at a mappable point. This allows us to
accurately map the intervals across all of the binaries.

The mappable points consist of (a) procedure entry points
and (b) loop branches in the binaries. The notion is that if we
can find the exact same loop branches and procedure entry
points across all of the binaries then we can use these map-
pable points to define interval boundaries and pick simulation
points which start and end at these mappable points. These
simulation points can then be mapped to any other binary in
the set of binaries considered.

For all the binaries being considered for a program, we
first match up the procedure entry points with the same pro-
cedure names across all of the binaries, using debug symbol
information. These procedure entry points represent the same
exact point in execution across all of the binaries.

4

We also identify matching loop branches across all the
binaries. For this we use two pieces of information: execution
counts from the profiles collected in the previous step, and
debug line number information associated with each branch.
If the execution counts and line numbers for a branch match
across all binaries, then that branch represents the same part
of execution across all binaries.

For both procedure entry points and loop branches, the
execution count across all binary versions must match. This
guarantees that the mappable points will execute the same
number of times across all binaries, which allows us to spec-
ify regions in the execution of any binary in the set by us-
ing mappable points as delimiters - for example, a simula-
tion region can start at mappable point A after it has executed
X times and end when mappable point B has executed Y
times. This representation allows us to capture the same re-
gions across the executions of different binaries.

3.2.3 Create Variable Length Intervals Using Mappable
Points

We want to partition the execution into intervals that are close
to a desired size specified by the user (e.g. 100 million in-
structions). For each interval we collect a basic block fre-
quency vector which is given to SimPoint in the following
step. Only one binary (the primary binary) is profiled in this
step.

The mappable points (markers) selected in the prior step
are used to break execution into variable length intervals. As
the program executes, we keep track of how often each map-
pable marker is encountered, because any mappable marker
could be used as an interval boundary. For example, if the
desired interval size is 100 million instructions, and we have
just executed 100 million instructions, we need to create an
interval boundary on the next mappable marker we encounter.
When the next mappable marker is reached, we record its
marker ID and the number of times it has executed since the
start of execution to bound the interval. We do this from
the start of execution, ending intervals every time we reach
the desired interval size at the next mappable marker encoun-
tered during execution. The execution count is critical, since
markers can execute many times. Each (marker ID, execution
count) pair uniquely identifies a specific point in execution
that can be mapped to other binaries.

3.2.4 Pick Simulation Points for the Primary Binary
Next we run SimPoint on the basic block vectors collected for
the mappable intervals from the primary binary to pick simu-
lation points. We use SimPoint 3.0, which supports variable
length intervals and considers the number of instructions in
each interval during the clustering process and the search for
simulation points.

For the primary binary, SimPoint generates simulation
points, weights for each simulation point, and phase labels
for every interval. Each simulation point represents a unique

phase, and the weight associated with the simulation point
reflects the fraction of executed instructions in that phase.

The primary binary can be selected arbitrarily from the
set of binaries available, but it should be noted that interval
sizes can expand or contract depending on which binary is
chosen as the primary. One interval is created approximately
every 100M instructions executed by the primary binary, so if
the other binaries execute more or fewer instructions between
interval boundaries, the mapped intervals can be bigger or
smaller in the other binaries.

3.2.5 Map the Simulation Points to All Binaries
We next map the simulation points chosen from the primary
binary to the other binaries, creating simulation points across
all binaries that all represent the same part of execution.

The start and end of each simulation point is defined by
a (marker ID, execution count) pair. This pair represents the
simulation point across all binaries, and can be used during
simulation to represent the start and end of that simulation
point when executing each binary.

Because our simulation points are defined by mappable
markers, nothing needs to be done in this step.

3.2.6 Recalculate Weights for Mapped Simulation
Points

Finally, we need to appropriately weight the simulation points
relative to the size of the clusters for each binary. Weights
must be readjusted because the amount of execution in each
phase can change across binaries.

A simulation point’s weight is the fraction of the total dy-
namic instructions that the program executes in the phase it
represents. For example, if a program executes 60% of its dy-
namic instructions in phase P , the simulation point for phase
P will have a weight of 60%. We calculate the correct weight
for each simulation point in each binary by running each bi-
nary, and counting the number of dynamic instructions exe-
cuted in each phase.

3.3 Dealing With Optimized Code Regions
Compiler optimizations may modify a binary’s call-loop
structure. A procedure that has been inlined in the optimized
version of a binary will not be mappable, since it will no
longer have the procedure name and entry point associated
with it. Although the process mentioned above for mapping
points across the binaries does not handle this case, we have
extended the mapping of points to handle some of these opti-
mization cases.

We can detect inlined procedures by their parent nodes
and the loop structure within the procedure. Consider a pro-
cedure that has a loop that executes N times, which is called
from another procedure that has a loop that executes M times.
If this procedure has been inlined and its loop structure main-
tained, we expect the caller to now have two loops, executing
N and M times respectively. We can still map the loop of
the inlined procedure because we can identify it based on its
call count. Of course, if N = M , we can not determine

5

which loop belongs to the inlined procedure based on the call
counts.

Additional techniques can be done to map optimized
code, and that is part of future research.

4 Methodology
We evaluate our approach for selecting cross binary simu-
lation points using CMP$im [3], a Pin [9] based multi-core
simulator. CMP$im models an in-order processor and can
simulate the performance of applications run to completion.
CMP$im is configured to model a single-core processor with
a three-level non-inclusive cache hierarchy with parameters
as shown in Table 1. All caches use a 64B line-size and LRU
replacement policy.

To evaluate our approach, we compiled the SPEC2000
programs with debug information (-g compiler flag) on 32-
bit (x86) and 64-bit (x86 64) Linux. The programs were com-
piled using version 9.0 of Intel’s C/C++ and Fortran compil-
ers. For each program we also compiled unoptimized and
optimized versions, for a total of four binaries per SPEC pro-
gram: 32-bit Optimized, 32-bit Unoptimized, 64-bit Opti-
mized, and 64-bit Unoptimized. We then compare the per-
formance of these binaries and examine how well the Sim-
Point based techniques estimate the speedup between the dif-
ferent binaries. We selected a subset of benchmarks from the
SPEC2000 suite that would provide a representative sample
and also include a wide range of programs with interesting
behaviors. For each of the programs we selected we provide
results using the reference inputs.

Simulation regions are represented with PinPoints
files [11], which is a Pin tool chain that generates basic block
vectors for each interval and then runs them through Sim-
Point 3.0 to get the simulation points and weights. We ran
each binary under CMP$im configured as above with the Pin-
Points file describing the simulation regions for the binary
for the given input. Using statistics (reported by CMP$im)
and weights (reported by SimPoint) for each simulation re-
gion, we compute a prediction for whole-program statistics
and compare the results of the prediction to the actual whole-
program statistics reported by CMP$im.

5 Results
In this section we evaluate SimPoint’s performance estimates
across different binaries compiled from the same program
source. We show that our proposed mappable SimPoint tech-
nique is an improvement over the per-binary SimPoint ap-
proach because it allows us to simulate the same regions
across different binaries.

5.1 SimPoint Performance Estimation
SimPoint can be run with different configurations which may
result with different simulation points being selected. To
fairly compare the two SimPoint methods we used the same
SimPoint configurations for both techniques.

0

100

200

300

400

500

600

am
m

p
ap

pluap
si ar

t

bz
ip2
cr

af
ty
eo

n

eq
ua

ke

fm
a3

d
gc

c
gz

ip
luc

asm
cf

m
es

a

pe
rlb

m
k

six
tra

ck
sw

im
tw

olf

vo
rte

x
vp

r

wup
wiseAvgA

ve
ra

ge
 In

te
rv

al
 S

iz
e

(M
ill

io
ns

)

Figure 2: Interval Size for mappable SimPoint (VLI). Each
bar shows the average across all four binaries. The size of
each interval in per-binary SimPoint (using FLIs) is constant
at 100 million instructions.

We limited SimPoint’s maximum number of clusters to
10. This is an upper limit on the number of clusters SimPoint
can use to characterize the phase behavior of a program. One
simulation point is generated for each cluster (phase) identi-
fied. SimPoint generally picks fewer simulation points than
the upper limit because it usually finds a good phase charac-
terization with fewer clusters.

Figures 1 and 2 show the number of simulation points
picked and the average interval size respectively for each
benchmark we examined. Figures 1 shows results for per-
binary SimPoint (FLI) and mappable SimPoint (VLI), while
Figure 2 only shows results for mappable SimPoint, because
the interval size for per-binary SimPoint is fixed at 100 mil-
lion instructions. We compiled four different binaries for each
benchmark, and for each benchmark we are showing the av-
erage across these four binaries.

Figure 1 shows that both techniques select a similar num-
ber of simulation points on average. This is expected since
the binaries all represent the same program, so we are still
observing the same behaviors.

To understand the interval size differences between per-
binary SimPoint and mappable SimPoint shown in Figure 2,
recall that per-binary SimPoint and mappable SimPoint split
executions into intervals differently. Per-binary SimPoint
splits every execution of a program binary into fixed length
100 million instruction intervals, while the mappable Sim-
Point approach produces intervals of at least 100 million in-
structions. In mappable SimPoint, an interval ends only when
a mappable marker is reached, so intervals can be larger than
100 million instructions.

In addition, mappable SimPoint constructs intervals from
the execution of one binary and maps the intervals to the other
binaries. The same interval in another binary may not execute

6

Cache Level Capacity Associativity Line Size Hit Latency Type

FLC(L1D) 32KB 2-way 64 bytes 3 cycles WriteBack
MLC(L2D) 512KB 8-way 64 bytes 14 cycles WriteBack
LLC(L3D) 1024KB 16-way 64 bytes 35 cycles WriteBack
DRAM 250 cycles

Table 1: Memory System Configuration

0

2

4

6

8

10

12

am
m

p
ap

plu ap
si ar

t

bz
ip2

cr
af

ty
eo

n

eq
ua

ke

fm
a3

d
gc

c
gz

ip
luc

as m
cf

m
es

a

pe
rlb

m
k

six
tra

ck
sw

im
tw

olf

vo
rte

x
vp

r

wup
wise Avg

N
um

be
r

of
 S

im
P

oi
nt

s FLI VLI

Figure 1: Number of SimPoints for per-binary SimPoint (FLI) and mappable SimPoint (VLI). Each bar shows the average
across all four binaries.

the same number of dynamic instructions. Suppose, for ex-
ample, that an unoptimized binary executes 10 times more
instructions than an optimized binary. If we use the unopti-
mized binary as the primary binary, we will construct map-
pable 100 million instruction intervals, but when the intervals
are mapped to the optimized binary, the intervals will shrink
to 10 million instructions on average.

This is why we see a smaller average simulation point
size in Figure 2. The intervals we constructed for the pri-
mary binary, when mapped to the other binary versions be-
came smaller in most cases.

applu has a much larger interval size because our tech-
nique was unable to find mappable markers across all four
binaries for large execution regions. In these execution re-
gions, a loop calls five procedures that each solve a partial
differential equation. Each of the five procedures has a simi-
lar looping structure since they are doing a similar operation.
In the optimized version of this binary, all five procedures are
inlined into the loop. Furthermore, the loops were split by the
optimizer, and code was moved within this loop. While our
technique can deal with simple cases of inlining, in this case
there was not enough structure left after optimization to map
the optimized code to the unoptimized code. Our approach
can be extended to handle more of these optimization cases
with more powerful mapping techniques, and this is part of
our future work.

Figure 3 shows the relative error in estimated CPI for each

benchmark. As in the previous figure, due to space con-
straints each bar in this graph is the average across four bi-
naries. For each binary we calculate the CPI error for that bi-
nary using the simulation points compared to a full simulation
of the program. We then averaged this CPI error across the
four binaries for the results shown. On average we see that
both techniques accurately estimate the performance of the
programs. The per-binary technique accurately estimate the
performance for each binary when compared to the full exe-
cution of that binary, using a different set of simulation points
for each binary. Figure 3 also shows that mappable simula-
tion points achieve accurate performance estimates, but the
figure does not show that the biases are consistent in the er-
rors across the binaries, which is the focus of the next result.

5.2 Speedup Comparison

When using sampled simulation for design space exploration,
it is very important to have a consistent bias across the exper-
iments to make meaningful performance comparisons. Here
we calculate the actual speedup between different binaries
and compare how the two SimPoint methods perform in es-
timating the speedup. We find that the mappable SimPoint
method has a more consistent bias than the per-binary Sim-
Point method, and is more accurate when comparing results
across different binaries.

Figures 4 and 5 show the error in speedup estimation
across several binary pair configurations. Figure 4 shows bi-

7

0%
1%
2%
3%
4%
5%
6%
7%
8%

am
m

p
ap

plu ap
si ar

t

bz
ip2

cr
af

ty
eo

n

eq
ua

ke

fm
a3

d
gc

c
gz

ip
luc

as m
cf

m
es

a

pe
rlb

m
k

six
tra

ck
sw

im
tw

olf

vo
rte

x
vp

r

wup
wise Avg

C
P

I E
rr

or
FLI VLI

10.8%

Figure 3: CPI Error for per-binary SimPoint (FLI) and mappable SimPoint (VLI). Each bar shows the average across all four
binaries.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

am
m

p
ap

plu ap
si ar

t

bz
ip2

cr
af

ty
eo

n

eq
ua

ke

fm
a3

d
gc

c
gz

ip
luc

as m
cf

m
es

a

pe
rlb

m
k

six
tra

ck
sw

im
tw

olf

vo
rte

x
vp

r

wup
wise Avg

S
pe

ed
up

 E
rr

or

fli_32u32o vli_32u32o

fli_64u64o vli_64u64o

21.7%

Figure 4: Speedup error for per-binary SimPoint (fli) and mappable SimPoint (vli). Speedup is computed across different binary
pair configurations on the same platform and the error is based on how closely the estimated speedup is to the true speedup.
32U is 32-bit Unoptimized, 32O is 32-bit Optimized, etc.

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

am
m

p
ap

plu ap
si ar

t

bz
ip2

cr
af

ty
eo

n

eq
ua

ke

fm
a3

d
gc

c
gz

ip
luc

as m
cf

m
es

a

pe
rlb

m
k

six
tra

ck
sw

im
tw

olf

vo
rte

x
vp

r

wup
wise Avg

S
pe

ed
up

 E
rr

or

fli_32u64u vli_32u64u
fli_32o64o vli_32o64o

38%12.5%

Figure 5: Speedup error for per-binary SimPoint (fli) and mappable SimPoint (vli). Speedup is computed across different binary
pair configurations across different platforms (32-bit and 64-bit) and the error is based on how closely the estimated speedup
is to the true speedup. 32U is 32-bit Unoptimized, 32O is 32-bit Optimized, etc.

8

nary pair configurations on the same platform varying the op-
timization levels, while Figure 5 shows binary pair configura-
tions across platforms for the same optimization level. Each
figure shows how closely the estimated speedup of either per-
binary or mappable SimPoint is to the true speedup. We com-
pute the error in speedup as the following: |(TrueSpeedup−
EstimatedSpeedup)/T rueSpeedup|. The TrueSpeedup
is computed as the ratio of total cycles executed for two bi-
nary versions. For example, the TrueSpeedup for 32u32o
configuration is the ratio of the number of cycles executed
with the 32-bit unoptimized version and the 32-bit optimized
version. The EstimatedSpeedup is computed just like the
TrueSpeedup but instead of using the true number of cycles
that execute we are estimating the number of cycles using
sampled simulation. The error in speedup tells us how close
our speedup estimates are to the actual speedup seen between
the two binaries.

For each benchmark in these figures we show 4 pairs of
configurations for speedup analysis: 32-bit unoptimized to
32-bit optimized and 64-bit unoptimized to 64-bit optimized
in Figure 4 and 32-bit unoptimized to 64-bit unoptimized and
32-bit optimized to 64-bit optimized in Figure 5. For each
configuration we estimate the speedups using the per-binary
and mappable SimPoint methods and compute the speedup
error as described above.

The results in these figures show that mappable SimPoint
results in a lower error in speedup estimation on average than
per-binary SimPoint, for the binaries we examine. This re-
sult can be explained by the lack of behavioral consistency in
samples that are chosen as simulation points across the dif-
ferent binaries for the per-binary approach. Whenever we use
simulation on a small portion of a program to estimate the
performance of the whole program, there will be some un-
avoidable error for behaviors that are not well-represented in
the simulation. We call this a bias in the simulation, and it
occurs because it is impossible to simulate a behavior that
is not represented by a simulation point. Because mappable
SimPoint uses the same execution regions across different bi-
naries, errors in performance estimation due to lack of rep-
resentation will occur consistently across all the binary exe-
cutions. Thus the error that occurs due to bias is consistent
across all our estimates. This consistency allows us to obtain
performance estimates that are more accurate when compar-
ing performance across binaries, allowing us to make better
design decisions.

5.2.1 Phase Bias Comparisons
In the per-binary SimPoint approach we are picking a differ-
ent set of simulation points for each binary version. Each set
of simulation points will be accurate in representing the over-
all execution for that binary. However, a particular program
behavior may be more representative in one binary (since a
simulation point may be chosen directly from that behavior),
and less representative in another binary. Thus the unavoid-
able error due to using a small fraction of program execution

to represent the whole program execution will not be consis-
tent across all the binary versions using the per-binary Sim-
Point approach. Per-binary SimPoint can give semantically
similar simulation points that represent common program be-
haviors across binaries, but it is not guaranteed.

As a particular example of the benefits of consistent bias
for making design decisions, we consider two benchmarks
in detail: gcc and apsi. Both benchmarks have higher
speedup error using per-binary SimPoint than our mappable
SimPoint technique. Tables 2 and 3 compare phase statistics
across two binary versions for gcc and apsi respectively.
Table 2 compares the largest three phases found with per-
binary SimPoint and mappable SimPoint across 32-bit unop-
timized and 64-bit unoptimized gcc binary versions. Table 3
compares the largest three phases found with per-binary Sim-
Point and mappable SimPoint across 32-bit optimized and
64-bit optimized apsi binary versions. Both tables show for
each phase the phase ID, the weight of the phase (the percent-
age of executed instructions in that phase), the true CPI of the
phase (the average CPI across all intervals in that phase), the
estimated CPI using the SimPoint techniques, and the relative
error between the true CPI and the SimPoint CPI.

Table 2 shows the problem of picking simulation points
for each binary using the per-binary (FLI) approach. For
gcc we see that the weights for the three phases for FLI
changes from 36% to 22% for phase 1, then from 31% to
18% for phase 2, and then from 9% to 16% for phase 3. This
shows that for the 64-bit binary, a large portion of execution is
grouped into different phases compared to the 32-bit binary.
This is further shown by the significant changes in CPI error
for the phases between the two binaries. These weights and
CPI errors are the bias that SimPoint introduces. This bias
is perfectly fine to have when using a single binary to com-
pare options across a design exploration, because the bias is
consistent and does not change.

When different binaries are used to explore a design
space, the biases can change, but they must be consistent. Ta-
ble 2 shows that per-phase biases can change significantly be-
tween the binaries when using the per-binary (FLI) SimPoint
approach. For example, when using FLI the second phase in
gcc has an error of 56% for the 32-bit binary and -17% for
the 64-bit binary. Similarly the 32-bit binary has 19% error
and the 64-bit binary has -8% error. This change in bias is the
reason for the 38% error in speedup for gcc in Figure 5.

In comparison, the mappable (VLI) SimPoint approach
proposed in this paper has a consistent bias across the phases.
This is because the simulation points chosen across the bina-
ries represent the same part of execution. The weights have
slightly changed for VLI, but this is to be expected due to dif-
ferences in compilation. Similar results can be seen for apsi
in Table 3. For apsi the bias for the per-binary FLI approach
for phase 2 changes from -0.7% to 37%, whereas the bias is
kept consistent across the phases for our mappable SimPoint
approach.

9

gcc/166
32-bit Unoptimized 64-bit Unoptimized

Phase Weight True CPI SP CPI CPI Error Phase Weight True CPI SP CPI CPI Error
1 0.35 3.16 3.15 0.2% 1 0.28 2.97 2.97 -0.1%

VLI 2 0.26 3.99 2.93 27% 2 0.21 4.11 2.93 29%
3 0.14 4.47 5.17 -16% 3 0.17 5.49 6.34 -16%

1 0.36 3.16 3.16 0% 1 0.22 2.98 2.97 0.5%
FLI 2 0.31 6.54 2.90 56% 2 0.18 6.04 7.04 -17%

3 0.09 5.00 4.04 19% 3 0.16 6.66 7.19 -8.0%

Table 2: Phase comparison across 32-bit unoptimized and 64-bit unoptimized gcc binary versions

apsi/ref
32-bit Optimized 64-bit Optimized

Phase Weight True CPI SP CPI CPI Error Phase Weight True CPI SP CPI CPI Error
1 0.52 3.04 2.91 4.5% 1 0.52 2.59 2.44 5.9%

VLI 2 0.19 3.57 3.10 13% 2 0.18 3.16 2.66 16%
3 0.05 4.66 4.70 -0.9% 3 0.05 3.64 3.63 0.3%

1 0.71 3.50 3.00 14% 1 0.65 2.77 2.50 0.9%
FLI 2 0.05 4.58 4.61 -0.7% 2 0.08 5.34 3.39 37%

3 0.05 4.60 4.63 -0.7% 3 0.06 7.61 7.55 0.8%

Table 3: Phase comparison across 32-bit optimized and 64-bit optimized apsi binary versions

Finally, we want to emphasize that the error seen for Sim-
Point for a given phase in Tables 2 and 3 is to be expected.
The error can occur because the single simulation point used
for the phase did not represent all of the behavior in that
phase, just the majority of the behavior for the phase. Sim-
Point is used to find a small set of the most representative
behaviors, and because of this not every behavior can be ap-
propriately represented. From our several years of using Sim-
Point, our experience has shown that the majority of behav-
iors will be captured, and this allows us to perform accurate
architecture design comparisons. This is achievable when us-
ing a single binary for design exploration, since the same sim-
ulation points are used, which results in a consistent bias and
error across the architectures examined. When using multiple
binaries, our mappable SimPoint is needed in order to capture
the same representative part of execution for the simulation
points across the different binaries. This maintains a consis-
tent bias and error for the cross binary simulation points.

6 Related Work
We now briefly compare our approach to prior techniques in
simulation that use procedure and call boundaries to define
intervals of program execution.

Huang et al. [8] considered procedures and loops to par-
tition a program’s execution. The partitioning determined
where and when statistical samples should be taken during
architecture simulation. Their analysis broke up a program’s
execution at static call sites, and if a procedure executed for

too long, they divided the procedure’s execution into its ma-
jor loops. To determine the sample rate, they examine the
variability of several architecture metrics for each program
region.

Shen et al. [14] used Wavelets [1] and Sequitur [10] on
a trace of data reuse distances to build a hierarchy of phases
which reflect the program’s behavior patterns. They identify
basic blocks that indicate the start of each phase when exe-
cuted, but they do not consider the problem of finding mark-
ers that can be mapped across binaries.

Another study by Lau et al. [4] presented an automated
profiling approach to identify code constructs (branches, pro-
cedure calls and returns) that indicate phase changes when ex-
ecuted. They built a hierarchical procedure call-loop graph to
represent a program’s execution, where each edge also tracks
the average hierarchical execution variability on paths from
that edge. They used the call-loop graph to identify branch
points with low variability, and then examined splitting the
program’s execution at those points. This created intervals
with very similar phase behavior aligned to the natural phase
behavior found in the code, but the interval sizes were too
large to use for simulation. In addition, two other studies
similarly examined breaking up sample intervals at loop and
procedure call boundaries [5, 7], with similar results.

Our approach focuses on a simulation scenario not ad-
dressed in any of the above research. All of the above re-
search examined only applying their approach to one binary
for a single program/input combination, whereas we are fo-

10

cusing on how to effectively compare multiple binaries for a
single program/input combination. The difference in our ap-
proach is that we need to (a) perform analysis to find map-
pable points across all of the binaries, even in the face of
compiler optimizations, whereas the prior techniques break
intervals at any arbitrary branch point, and (b) we have to cor-
rectly calculate the weights of the mapped simulation points
for each binary, which the prior techniques did not have to
deal with.

7 Summary
Researchers testing a new ISA extension, examining a new
architecture, or trying a new compiler optimization may need
to analyze and evaluate performance across different binaries
of a program. Due to the slow nature of performance simu-
lators, it has become a standard practice to use representative
sampling simulation techniques. In this paper we examined
two approaches for simulation when there are multiple bina-
ries for a single program/input.

The first approach simply applies the existing SimPoint
approach separately on each binary, creating a different set of
simulation points for each binary. This approach can accu-
rately estimate the performance for each binary by using dif-
ferent simulation points for each binary, but the approach can
have significant error when comparing performance across
binaries, since the different simulation points may emphasize
different behaviors.

The second approach identifies simulation points that rep-
resent the same behaviors across all binary representations
of a program. This allows us to simulate the same parts of
execution as we change the ISA or compiler optimizations
during design space exploration. Our approach finds phase
transitions during execution that are identifiable in all of the
binaries considered. We use these phase markers along with
SimPoint to pick simulation points to represent the full exe-
cution of the program, and to identify the exact same start and
end of execution for the simulation points in each binary. Our
results show that this method does not suffer from changing
biases that can occur with the first approach, so cross-binary
simulation points can be used to accurately compare perfor-
mance across binaries.

Acknowledgments
We would like to thank the anonymous reviewers and Leslie
Barnes for providing helpful comments on this paper. This
work was funded in part by NSF grant No. CCR-0311710,
NSF grant No. ACR-0342522, UC MICRO grant No. 03-010,
and a grant from Intel and Microsoft.

References
[1] A. Cohen and R. D. Ryan. Wavelets and Multiscale Signal Processing.

Chapman & Hall, 1995.

[2] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0: Faster
and more flexible program phase analysis. Journal of Instruction Level
Parallelism, 7, Sept. 2005.

[3] A. Jaleel, R. S. Cohn, C. Luk, and B. Jacob. Cmp$im: A binary in-
strumentation approach to modeling memory behavior of workloads on
cmps. Technical Report UMDSCA-2006-01, Intel, Jan. 2006.

[4] J. Lau, E. Perelman, and B. Calder. Selecting software phase mark-
ers with code structure analysis. In International Symposium on Code
Generation and Optimization, Mar. 2006.

[5] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Moti-
vation for variable length intervals and hierarchical phase behavior. In
IEEE International Symposium on Performance Analysis of Systems and
Software, Mar. 2005.

[6] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong
correlation between code signatures and performance. In IEEE Inter-
national Symposium on Performance Analysis of Systems and Software,
March 2005.

[7] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase classifi-
cation. In IEEE International Symposium on Performance Analysis of
Systems and Software, Mar. 2004.

[8] W. Liu and M. Huang. EXPERT: Expedited simulation exploiting pro-
gram behavior repetition. In International Conference on Supercomput-
ing, June 2004.

[9] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 2005.

[10] C. G. Nevill-Manning and I. H. Witten. Compression and explanation
using hierarchical grammars. In The Computer Journal vol. 40, 1997.

[11] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi.
Pinpointing representative portions of large Intel Itanium programs with
dynamic instrumentation. In 37th International Symposium on Microar-
chitecture, Dec. 2004.

[12] D. Pelleg and A. Moore. X-means: Extending K-means with efficient
estimation of the number of clusters. In Proceedings of the 17th Interna-
tional Conf. on Machine Learning, pages 727–734. Morgan Kaufmann,
San Francisco, CA, 2000.

[13] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and
early simulation points. In International Conference on Parallel Archi-
tectures and Compilation Techniques, Sept. 2003.

[14] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2004.

[15] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications.
In International Conference on Parallel Architectures and Compilation
Techniques, Sept. 2001.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Proceedings of the 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[17] J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins. Characteriz-
ing and comparing prevailing simulation techniques. In International
Symposium on High-Performance Computer Architecture, Feb 2005.

11

