
CoLT: Coalesced Large-Reach TLBs

Binh Pham∗ Viswanathan Vaidyanathan∗ Aamer Jaleel† Abhishek Bhattacharjee∗

∗ Dept. of Computer Science, Rutgers University † Intel Corporation, VSSAD

{binhpham, viswav, abhib}@cs.rutgers.edu aamer.jaleel@intel.com

Abstract

Translation Lookaside Buffers (TLBs) are critical to system

performance, particularly as applications demand larger working

sets and with the adoption of virtualization. Architectural support

for superpages has previously been proposed to improve TLB per-

formance. By allocating contiguous physical pages to contiguous

virtual pages, the operating system (OS) constructs superpages

whose information is recorded using just one TLB entry rather

than the hundreds required for the constituent base pages. While

this greatly reduces TLB misses, these gains are often offset by

the implementation difficulties of generating and managing ample

contiguity for superpages.

We show, however, that basic OS memory allocation mecha-

nisms such as buddy allocators and memory compaction naturally

assign contiguous physical pages to contiguous virtual pages. Our

real-system experiments show that while usually insufficient for su-

perpages, these intermediate levels of contiguity exist under var-

ious system conditions and even under high load. In response,

we propose Coalesced Large-Reach TLBs (CoLT), which lever-

age this intermediate contiguity to coalesce multiple virtual-to-

physical page translations into single TLB entries. We show that

CoLT implementations eliminate 40% to 58% of TLB misses on

average, improving performance by 14%.

Overall, we demonstrate that the OS naturally generates page

allocation contiguity. CoLT exploits this contiguity to eliminate

TLB misses for next-generation, big-data applications with low-

overhead implementations.

1 Introduction

Translation Lookaside Buffers (TLBs) are crucial to system

performance due to their long miss penalties [5, 11, 14, 19, 22, 26].

Past work has shown that TLB misses degrade performance by 5%

to 14% for even nominally-sized applications. This number wors-

ens to 50% in virtualized environments or when the application’s

memory footprint increases [8, 21].

Superpages have previously been proposed to increase TLB

coverage [15, 16, 23, 25, 28, 29]. A superpage is a memory page

that is sized as a multiple of a base page and is typically in the

megabyte or gigabyte range. Each TLB superpage entry can thus

replace hundreds of baseline TLB entries, boosting TLB coverage.

By construction, superpages target situations where the OS can

seamlessly generate vast amounts of contiguity. Unfortunately, a

number of issues may preclude this. For example, superpages may

magnify an application’s memory footprint, increasing paging traf-

fic. Superpages also require specialized and high-overhead algo-

rithms to assign aligned and contiguous physical page frames to

contiguous virtual pages [25, 28, 29]. The OS therefore selectively

uses superpages such that the benefits of reduced TLB misses are

not outweighed by these overheads.

This work observes that there actually exists a second regime

of page allocation contiguity, orthogonal to superpaging. Specif-

ically, OS memory allocators use buddy allocators and memory

compaction daemons which also, by construction, allocate con-

tiguous physical page frames to contiguous virtual pages. These

mechanisms generate intermediate contiguity (in the range of tens

of pages), which falls short of superpage requirements (hundreds

of contiguous pages). However, this contiguity is achieved without

superpaging overheads like increased I/O traffic and sophisticated

page construction algorithms. In response, we propose Coalesced

Large-Reach TLBs (CoLT), a series of hardware mechanisms that

allow TLBs to coalesce multiple contiguous virtual-to-physical ad-

dress translations, increasing their memory reach. CoLT specifi-

cally targets large amounts of intermediate contiguity that super-

paging cannot exploit. Our contributions are as follows:

• We study, on a real system, how often consecutive virtual pages

are allocated consecutive physical pages. We find that even with

high system fragmentation, tens of pages are usually contiguous.

Furthermore, while superpaging does increase contiguity, much

of it falls short of the level necessary to actually create large

pages (a 2MB superpage needs 512 contiguous 4KB base pages,

while we see tens of contiguous pages). Instead, we show that

TLB coalescing effectively leverages this contiguity.

• We propose CoLT for set-associative, two-level TLB hierar-

chies commonly found in processors today [3, 17]. Our strate-

gies eliminate roughly 40% of L1 and L2 TLB misses, resulting

in average performance improvements of 12%.

• We develop CoLT support for small, fully-associative TLBs

commonly found in processors to cache superpage entries

[3, 17]. We show how to overcome the challenge of designing

these small structures, achieving L1 and L2 TLB miss elimina-

tion rates of 58% on average. These translate to average perfor-

mance improvements of 14%.

• Finally, we combine the benefits of coalescing on both set-

associative and fully-associative TLBs, improving average per-

formance by 14%.

Overall, we design low-overhead hardware to exploit interme-

diate levels of page allocation contiguity. Our studies evaluate this

approach under a variety of system configurations with heavy sys-

tem load and different superpaging configurations.

2 Background and Related Work

2.1 Prior TLB Enhancement Techniques

Address translation, especially with virtualization and larger

application working sets, is a primary source of system perfor-

mance degradation [8, 21]. In response, researchers have consid-

ered techniques to improve TLB structure, lookup, and placement

[9, 13]. More sophisticated techniques such as TLB prefetching

and mechanisms to accelerate page walks have also been consid-

ered [5, 11, 19, 27]. Our goal is to propose techniques, orthogonal

to past work, to further boost TLB performance.

2.2 Superpaging Benefits and Problems

Superpages or hugepages have previously been proposed to

lower TLB miss rates [15, 16, 23, 25, 28, 29]. Superpages are

typically sized as power-of-two multiples of baseline pages. For

example, x86 systems use 4KB baseline pages and support 2MB

and 1GB superpages. Furthermore, superpages must be aligned

in both virtual and physical memory (superpages of size N must

begin at virtual and physical addresses that are multiples of N).

While superpages lower TLB miss rates by replacing hundreds

to thousands of base page translations with a single superpage

translation entry, they have management overheads [23, 28]. For

example, dedicated OS code is required to support multiple large

page sizes [25, 28, 29]. The process of ensuring that sufficient

contiguous physical pages are allocated to virtual pages can suffer

high performance overheads, particularly when alignment restric-

tions are also imposed [15, 23]. Furthermore, if not fully-utilized,

superpages can increase the amount of I/O traffic and increase

page initialization/fault latency. A particular problem is the use

of a single dirty bit for all the baseline pages of a superpage; if

set, the entire superpage must be written back to disk even if only

one base page has been modified, greatly increasing disk traffic.

Therefore, the OS weighs these overheads against the benefits of

superpaging. Typically, the OS uses superpages sparingly, only

bothering to generate large amounts of contiguity when superpag-

ing is deemed to be worthwhile [4].

2.3 TLB Subblocking and Speculation

Two hardware-based schemes have been proposed to mitigate

superpaging overheads. Talluri and Hill [28] present complete-

subblock and partial-subblock TLBs, which record ranges of phys-

ical pages per virtual page entry. Complete subblocking, while ef-

fective, requires non-trivial modifications to traditional TLB hard-

ware. Partial-subblocking overcomes these overheads but with

explicit OS support [28]. Furthermore, subblocking was origi-

nally proposed for fully-associative designs rather than the set-

associative organizations most commonly used in products today.

Finally, sub-blocking effectiveness depends heavily upon page

alignment. Both complete and partial subblocking are most ef-

fective when the first virtual page of a contiguous group of vir-

tual (and physical pages) is aligned to the subblock length. Par-

tial subblocking goes beyond this, reducing hardware overheads

by requiring that base physical pages also be placed in an aligned

manner within subblock regions [28]. Overall, these requirements

constrain the amount of contiguity that can be exploited.

Alternately, past work [6] proposes TLB speculation for sys-

tems with reservation-based superpaging [23, 28]. Here, physi-

cal pages are allocated in aligned 2MB regions of physical mem-

ory corresponding to their alignment within a 2MB region of vir-

tual memory. Leveraging this knowledge, Barr, Cox, and Rixner

propose a SpecTLB structure, which interpolates between exist-

ing TLB entries to predict physical translations for TLB misses.

While effective, SpecTLB requires reservation-based superpaging,

which is not universally used (eg. Linux superpaging [4] does not

use reservation-based superpages). SpecTLB also requires an ad-

ditional TLB-like structure, and can increase instruction replays

on incorrect speculations.

2.4 Our Approach

In general, there are three regimes of page contiguity that the

OS generates. In the first regime, the OS does not succeed in map-

ping contiguous physical pages to contiguous virtual pages. In

these cases, only traditional techniques such as changing TLB or-

ganizations or prefetching are likely to be successful in increasing

hit rates [6, 11, 19]. At the other end of the spectrum, there exists a

regime of extremely high contiguity, when the OS decides that the

overheads of superpage construction are well worth the effort. Our

goal, in this work, is to exploit a third regime with intermediate

contiguity, where tens to hundreds of base pages are contiguous.

Our characterization studies will show that the OS naturally pro-

duces this contiguity without the overheads of superpages and that

this level of contiguity is more prevalent than the other regimes.

Our studies will be on a real system under a comprehensive set of

system environments which include heavily-fragmented systems

and systems with and without superpaging.

We will then realize low-overhead TLB hardware to exploit

intermediate contiguity. Unlike prior work on speculation or

prefetching [6, 11, 19], CoLT does not augment the standard TLBs

with separate structures. Unlike superpages or subblocking, we

avoid OS intrusion and do not require prescribed amounts of con-

tiguity. Instead, CoLT studies available contiguity and exploits as

much of it as possible.

3 Understanding Page Allocation Contiguity

We now explore why operating systems often allocate contigu-

ous physical page frames to contiguous virtual pages. Since CoLT

relies on this behavior, we ascertain which memory allocation poli-

cies and mechanisms produce contiguity.

3.1 Defining Page Allocation Contiguity

We say that system contiguity exists when consecutive virtual

pages are allocated consecutive physical page frames. For exam-

ple, if virtual pages 1, 2, and 3 are allocated physical page frames

58, 59, and 60, we say that these pages are contiguous. Moreover,

since this example involves three pages, we say that this is an in-

stance of 3-page contiguity.

Our definition is distinct from superpages in two ways. First,

superpages require a set amount of contiguity. For example, 2MB

2

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

Physical Memory

List 0

List 1

List 2

List 3

Free Lists

PFN 0

PFN 4/5/6/7

Figure 1. Buddy allocator used for
physical page allocation. Already allo-
cated pages are shaded, while free pages
are tracked by the free lists.

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

Physical Memory

List 0

List 1

List 2

List 3

Free Lists

PFN 0

PFN 6/7

Figure 2. Buddy allocator state after
an allocation for 2 pages is finished.

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

Free Pages

Movable Pages

PFN 0

PFN 1

PFN 2

PFN 3

PFN 4

PFN 5

PFN 6

PFN 7

Movable Pages

Figure 3. The memory compaction
daemon tracks movable and free memory
pages, exchanging them to eliminate frag-
mentation.

superpages on x86 systems require instances of 512-page contigu-

ity. Instead, we make no restrictions on the amount of contiguity

that is useful. Second, unlike superpages, we make no assumption

on alignment. Our relaxations on contiguity amounts and align-

ment restrictions reveal huge great intermediate contiguity.

Note that this definition requires simultaneous contiguity in

both virtual and physical page numbers. As such, CoLT does not

affect cases where only virtual (or physical) pages are contiguous;

these will be cached by TLBs in the conventional manner.

3.2 Sources of Page Allocation Contiguity

Operating systems maintain a complex set of policies and

mechanisms to determine how to allocate physical memory to ap-

plications. A number of these policies promote physical page con-

tiguity. We elaborate on them here, focusing on Linux for our dis-

cussion. Note, however, that our observations extend more broadly

to other operating systems which tend to utilize similar mecha-

nisms to allocate physical pages.

3.2.1. Buddy allocation. Linux uses a buddy allocator to track

physical pages and assign them to virtual pages on demand. Figure

1 illustrates the operation of a buddy allocator, assuming that pages

1, 2, and 3 are already allocated. All free physical pages or page

frames (PFs) are grouped into ten lists of blocks, which we refer to

as free lists. Entry x in the free list tracks groups of 2x contiguous

physical pages. For example, pages 4-7 have 4-page contiguity

and are hence listed by entry two.

Physical page allocations proceed as follows. Suppose an ap-

plication requires an N-page data structure. To accommodate this,

the application makes a malloc call, simultaneously requesting

N physical pages from the OS. The buddy allocator first searches

the free list entry corresponding to the smallest contiguous page

frames bigger than N (entry ⌈log2(N)⌉). If a block of free phys-

ical pages is found in that list, allocation successfully completes.

Otherwise, the free list is progressively climbed until an entry with

a block of free contiguous physical pages is found. Once a free

block is found, the buddy allocator must minimize memory frag-

mentation. Therefore it iteratively halves the block, inserting these

new blocks in their appropriate free list locations, until it extracts

a block of N contiguous physical pages. As an example, Figure

2 shows the state of the free list after an application level request

for two physical pages to be allocated. At first, entry 1 in the free

list is checked; however, since this is empty, entry 2 is scanned.

Here, a free block with contiguous physical pages 4, 5, 6, and 7 is

found. Hence, the buddy allocator halves this block of four pages,

returning pages 4 and 5 to the application and moving pages 6 and

7 to free list entry 1. Apart from allocation, the buddy allocator

also updates its state when physical pages are released. At this

point, the kernel attempts to merge pairs of free buddy blocks if

both have the same size and are contiguous. This merge process is

iterative, leading to large amounts of contiguity.

By construction therefore, the buddy allocator deliberately pro-

vides contiguous physical page frames to the application when it

asks for multiple page frames together. Since applications usually

make malloc calls that simultaneously request a number of physi-

cal pages together (rather than one page at a time), the buddy allo-

cator is able to provide them a suitable contiguous range of pages.

We will show that the buddy allocator successfully produces this

contiguity even in the presence of significant system load. While

insufficient for superpages, CoLT benefits from this substantially.

3.2.2. Memory compaction. In order to glean contiguous runs of

physical pages, the buddy allocator relies on ensuring that memory

fragmentation is tightly controlled. However, fragmentation is pro-

nounced when multiple processes with large working sets simul-

taneously run on the system. Therefore, many operating systems

boost the buddy allocator with a separate memory compaction dae-

mon. Figure 3 details the Linux memory compaction daemon in

three steps on a heavily-fragmented system.

First, as shown in the left-most diagram of Figure 3, memory

compaction runs an algorithm that starts at the bottom of the phys-

ical memory and builds a list of allocated pages that are movable.

While most user-level pages are movable, pinned and kernel pages

usually are not. Nevertheless, user-level pages usually outnumber

kernel pages, making most pages movable.

Second, the daemon starts at the top of physical memory and

builds a list of free pages. Eventually, the two algorithms meet in

the middle of the physical page list. At this point, Linux invokes

migration code to shift the movable pages to the free page list,

yielding the unfragmented diagram at the right of Figure 3.

Since there is a cost associated with moving pages, the com-

paction daemon is only triggered when there is heavy system frag-

mentation. As such, its operation naturally produces contiguity,

especially in tandem with the buddy allocator. In fact, we will

show that this daemon successfully generates contiguity even un-

der heavy system fragmentation.

3.2.3. Transparent hugepage support. Aside from buddy alloca-

tion and memory compaction, support for superpages is a primary

cause of page allocation contiguity. Unfortunately superpage man-

agement comes with high overheads. As a result, Linux’s Trans-

3

parent Hugepage Support (THS), supported since the 2.6.38 kernel

[4], uses superpages sparingly. When THS is enabled, the mem-

ory allocator attempts to find a free 2MB block of memory. If

this block is naturally aligned at a 2MB boundary, a superpage is

constructed. In practice, the OS relies on the memory compaction

daemon to construct these 2MB regions. Aligned 2MB regions

are rare; when a superpage cannot be constructed, the system de-

faults to the buddy allocator. Even when the 2MB pages are allo-

cated, increased load can eventually make them harmful. In these

cases, system pressure triggers a daemon that breaks superpages

into baseline 4KB pages.

In practice, THS struggles to maintain many superpages simul-

taneously. However, it does succeed in creating additional levels

of contiguity for two reasons. First, while optimistically-allocated

2MB superpages are often eventually split due to system pressure,

they retain contiguity among tens of baseline 4KB pages. Second,

THS relies on the memory compaction daemon, triggering it more

often and providing the buddy allocator even higher levels of con-

tiguity suitable for CoLT.

3.2.4. System Load and Memory Fragmentation. Finally, page

allocation contiguity is deeply affected by the system load. If

many processes run simultaneously, main memory is likelier to

be fragmented. Therefore, one may initially expect that higher

load degrades contiguity. Surprisingly, we will show that conti-

guity can actually increase with greater system load. This occurs

because system load has a complex relationship with the memory

compaction daemon, triggering it more often when there is higher

load. This can, in turn, free up more contiguous physical frames

for the buddy allocator, eventually resulting in more contiguity.

4 CoLT Design and Implementation

Having detailed contiguity sources, we now propose three vari-

ants of CoLT. Overall, they share three design principles. First,

they detect instances of consecutive virtual-to-physical address

translations. These entries are coalesced into single TLB entries,

so as to reduce miss rates. Second, CoLT coalesces only on TLB

misses. While TLB hits could also prompt coalescing, this may

increase lookup latencies. Third, coalescing is unintrusive, un-

like speculation and prefetching [6, 11, 19, 27] which can degrade

performance. For example, incorrect speculations suffer a high

penalty. Incorrect prefetches lead to the eviction of useful entries

and higher bandwidth usage. Prior work mitigates these problems

by using separate structures to store prefetched translations or per-

form speculation [6, 11, 19]. In contrast, we coalesce entries di-

rectly into the TLBs but ensure that coalescing occurs only around

on-demand translations. In the worst case, coalesced entries may

be unused but are not harmful. This is crucial given that system

contiguity does not necessarily imply that all contiguous transla-

tions are used in temporal proximity. We ensure coalesced entries

are available if needed but do not harm TLB hit rates when they

are unused.

We propose three variants of CoLT for two-level TLB hier-

archies. This hierarchy contains set-associative L1 TLB and L2

TLBs, used to cache baseline 4KB pages [3, 17]. Superpages are

cached in separate small, fully-associative TLBs that are accessed

in parallel with the L1 TLB. Note that the L2 TLB is inclusive of

just the set-associative L1 TLB and not the superpage TLB.

There are three natural coalescing mechanisms for this hierar-

chy. First, we coalesce in just the set-associative L1 and L2 TLBs.

Second, we coalesce in the superpage TLB only. Third, we use a

combined approach that routes some coalesced entries to the set-

associative TLBs and others to the superpage TLBs. We now de-

scribe each of these schemes.

4.1 CoLTSA Design and Implementation

CoLT-Set Associative (CoLT-SA) coalesces multiple virtual-to-

physical page translations in the set-associative L1 and L2 TLBs.

We first detail its high-level operation and then focus on specific

design challenges.

4.1.1. Overall operation. The bottom half of Figure 4 shows a

high-level view of CoLT-SA. In step 1, the set-associative L1 TLB

and superpage TLB are looked up in parallel. Assuming L1 and

L2 TLB misses (step 2), a page table walk brings in the desired

translation entry into the LLC (step 3). We assume, like most x86

systems with dedicated MMU page table caches [5], that the LLC

is the highest cache level for page table entries.

After the LLC fill, two parallel events occur. First, the re-

quested translation is returned to the processor pipeline. In parallel,

the Coalescing Logic studies the translations around the requested

entry for contiguity. It coalesces as many of these translations as

possible, as long as they map to the same set. This coalesced en-

try is inserted into the L1 and L2 TLBs (step 4). However, con-

ventional set-associative TLBs map consecutive virtual addresses

(and hence contiguous translations) to consecutive sets, preclud-

ing coalescing. We therefore modify the virtual page bits used for

set-selection so that translations for groups of consecutive virtual

page numbers do map to the same set. Furthermore, since we pro-

vide the requested translation to the pipeline in parallel with the

Coalescing Logic’s operation, the latter is off the critical path and

does not affect TLB miss handling times.

4.1.2. TLB set selection. To understand how we modify TLB

set selection to permit coalescing, consider the following example.

An 8-set TLB would require three bits, bits 2 to 0 of the virtual

page number for set selection (VPN[2-0]). Naturally, this would

map consecutive translations to consecutive sets, preventing coa-

lescing. However, if we left-shift the index bits by log2(N) bits,
we may place N consecutive translations in the same set (permit-

ting a maximum of N contiguous translations to be coalesced into

a single entry). Therefore, to ensure that translations with four

consecutive virtual pages map to the same set, we use VPN[4-2]

as the new indexing bits.

To coalesce more entries, the indexing bits are further left-

shifted (for example, to coalesce up to eight entries, VPN[5-3]

must be used). However, using higher order bits for set index-

ing increases conflict misses since more consecutive entries are

mapped to the same set. This is a fundamental tradeoff for CoLT-

SA designs – in choosing the correct index bits, we must balance

opportunities for coalescing with potentially higher conflict misses.

We will show that allowing for coalescing of four contiguous trans-

lations generally performs best.

4.1.3. Lookup operation. The top half of Figure 4 illustrates

CoLT-SA lookups. Each coalesced TLB entry maintains tag bits,

the higher order bits left of the index bits used for set selection. For

example, if up to four contiguous translations can be coalesced

4

 Tag Bits V V V V Attr. Base PPN a

b

c

PPN Generation Logic

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing Logic

Cache line: PTE N to N+7
1

2

3

4

Figure 4. CoLT for set-associative L1
and L2 TLBs.

 Base VPN Coal. Length Attr. Base PPN

a
b

PPN Generation Logic

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing Logic

Cache line: PTE N to N+7
1

2

3

4

Range check logic

Base VPN ≤ Request VPN ≤

Base VPN + Coal. Length

5

Figure 5. CoLT for the fully-
associative superpage TLB.

L1 TLB
L2 TLB

Sup. TLB

LLC

Coalescing HW

Cache line: PTE N to N+7

1

2

3

4

Contiguity ≥

Threshold

Contiguity ≤

Threshold

Figure 6. Combined CoLT for all
TLBs.

in a TLB with eight sets, VPN[4-2] is used for set selection and

VPN[63-5] is the tag. In step (a), this tag is checked against the

requested virtual page number. In step (b), the non-index lower-

order virtual page bits (VPN[1-0] in our example) are used to se-

lect among multiple valid bits. There is one valid bit for every

possible translation in a coalesced entry. These valid bits indicate

the presence of a translation in the coalesced entry. If on step (b),

a valid bit is set, there is a TLB hit. At this point, extra logic

calculates the physical page number. CoLT entries store the base

physical page number for each coalesced entry. This number corre-

sponds to the virtual page represented by the first set valid bit. To

reconstruct the physical page number, combinational logic (PPN

Generation Logic) calculates the number of valid bits away this en-

try is from the first set valid bit. This number is added to the stored

base physical page number to yield the desired physical page.

4.1.4. Practical coalescing restrictions. Ideally, after the page

table is walked to handle a TLB miss, coalescing logic finds as

many contiguous translations around the requested translation as

possible. Practically, however, coalescing is restricted by two con-

straints. First, as we have already discussed, the choice of index

bits for set selection places a limit on coalescing opportunity. A

second limit arises from our desire to minimize the overhead asso-

ciated with searching for contiguous translations. On a TLB miss,

a page table walk finds the desired translation. We aim to prevent

any additional page walks when checking for contiguous entries

adjacent to the requested translation. Since the page table walk ac-

cesses the last-level cache (LLC) and brings data in 64-byte cache

lines, seven additional translations are fetched. These translations

are brought without additional memory references; thus we check

just them for contiguity. In practice, this approach restricts coa-

lescing to a maximum of eight translations. Despite this restriction,

CoLT eliminates a high number of TLB misses.

4.1.5. Replacement, invalidations, and attribute changes.

CoLT-SA assumes standard LRU replacement policies. While

there may be benefits in prioritizing entries with different coalesc-

ing amounts differently, we leave this for future work. We also

assume a single set of attribute bits for all the coalesced entries, re-

stricting coalescing opportunity. More sophisticated schemes sup-

porting separate attribute bits per translation in a coalesced entry

will improve our results. Furthermore on TLB invalidations, we

flush out entire coalesced entries, losing information for pages that

would be unaffected in standard TLBs. Gracefully uncoalescing

TLB entries and only invalidating victim translations will perform

even better. This too is the subject of future work.

4.1.6. Discussion of hardware overheads. To accommodate

CoLT, the TLBs experience some key hardware changes. We ar-

gue, however, that these changes are modest. First, we believe that

CoLT lookup remains low-overhead and does not impact TLB ac-

cess cycle times. The initial tag match and check of valid bits is

simple. The PPN generation logic addition is also low-overhead as

the amount of coalescing is bounded (in our example, at best, an

addition of four will be required). As such, readily-implementable

combinational logic, similar to logic used to calculate prefetching

strides and addresses or update branch predictor state, can calcu-

late the physical page number. This is lower-overhead than prior

prefetching schemes requiring dedicated adders [19].

Second, coalescing logic occurs on the TLB fill path rather than

lookup, allowing subsequent TLB reads to proceed unimpaired.

It is possible for subsequent reads to request translations that are

part of the requested coalesced entries. These reads must wait

until coalescing completes but we find these instances occur rarely.

Furthermore, one might expect CoLT to require additional TLB

ports to fill entries without conflicting with subsequent TLB reads.

In our results, we assume no additional ports, finding that there is

no significant performance degradation from this.

4.2 CoLTFA Design and Implementation

Rather than supporting coalescing in set-associative TLBs and

changing indexing schemes, we can instead coalesce into the fully-

associative TLB (this structure is usually used exclusively for su-

perpages). We refer to this as CoLT-Fully Associative (CoLT-FA).

4.2.1. Overall operation. The bottom half of Figure 5 delineates

CoLT-FA operation. Assuming misses in all the TLBs (steps 1 and

2), a page walk is conducted in step 3. At this point, a cache line

provides up to eight translations that can be checked for contiguity.

Up to eight translations are now coalesced in step 4. If coalescable,

the entry is loaded into the fully-associative TLB. If no coalescing

is possible, it is loaded into the set-associative L1 and L2 TLBs.

On insertion into the fully-associative TLB, further coalescing

is possible. Since contiguity may exist between the newly co-

alesced entry and a resident entry, the fully-associative TLB is

scanned to seek further opportunities for coalescing. This scan

is conducted while the requested TLB entry is returned to the pro-

cessor. Further coalescing from the scan is done in step 5.

Empirically, we have found that due to the small size of the

superpage-TLB, useful entries are frequently evicted. Therefore,

for performance reasons, when bringing a coalesced entry into the

fully-associative structure, we still bring just the requested entry

(and not its coalesced neighbors) into the L2 TLB. While this does

create some redundancy in terms of stored entries, we will show

that performance is improved. Note that we leave the L1 TLB

5

unaffected due to its much smaller capacity. Note also that CoLT-

FA shares both superpage entries and coalesced entries in a single

structure. One initial concern may be that if coalesced entries far

outnumber superpage entries, the latter will be evicted from the

fully-associative TLB. In practice, we find that this is not a prob-

lem for two reasons. First, superpages are used sparingly, requir-

ing a very small number of entries in the buffer. Second, when

used, these superpages are frequently accessed, meaning that they

remain at the head of the LRU list, preventing their eviction.

4.2.2. Lookup operation. The top half of Figure 5 details CoLT-

FA lookup. Each coalesced entry maintains a base virtual page

number as the tag and a field that logs the number of entries coa-

lesced. Unlike CoLT-SA, there are no coalescing restrictions due

to indexing schemes. We find that using 5 bits for the coalescing

length field suffices as this captures a contiguity of 1024 pages.

Each entry also stores the base physical page and attributes of all

contiguous translations.

In step (a), Range Checking Logic compares the requested vir-

tual page number against the range of translations stored by each

entry of the fully-associative TLB. As shown, comparator and

adder logic is required for the range check. If the virtual page

is detected in the range, there is a TLB hit. At this point (step

(b)), the PPN Generation Logic subtracts the tag base virtual page

number from the requested virtual page number. This value is then

added to the stored base physical page number to find the desired

physical page number.

4.2.3. Replacement, invalidations, and attribute changes. We

assume standard LRU for the fully-associative structure. Due to

its smaller size, we suspect though that smarter replacement poli-

cies will be even more effective. Furthermore, we share the same

attribute bits for all coalesced entries and invalidate entire entries,

but for larger amounts of coalescing. Despite this, we will show

that CoLT-FA performs effectively.

4.2.4. Discussion of hardware overheads.As described, the hard-

ware required for range checks and physical page number is more

complex than CoLT-SA. To account for this in our experiments,

we reduce the size of the fully-associative TLB in CoLT-FA as

compared to the baseline case without coalescing. Commercial

systems tend to implement 16 to 24-entry [17] fully-associative

TLBs for superpages. To ensure that the added lookup complexity

does not bias our results, we assume only 8-entry fully-associative

TLBs with coalescing. While a detailed circuit-level analysis of

the lookup overhead is beyond the scope of this work, our deci-

sion to apply CoLT to a half-sized fully-associative TLB attempts

to maintain the same access times.

An additional overhead arises from the secondary scan per-

formed between existing fully-associative TLB entries and the coa-

lesced entry being filled. While one might initially assume that we

may need to increase port counts to ensure that subsequent lookups

are not delayed, our implementation retains just the single port. In-

stead, we assume that the initial lookup of the fully-associative

TLB identifies those resident entries likely to be coalescible with

the filled entry. Once the coalescing logic merges translations from

a single LLC cache line, it then checks whether those resident en-

tries can be further coalesced. In this way, a second TLB scan can

actually be avoided, minimizing coalescing overheads.

4.3 CoLTAll Design and Implementation

Finally, CoLT-All coalesces into both set-associative L1/L2

TLBs and the superpage TLB. Its primary benefit over CoLT-SA

and CoLT-FA is that it provides potentially the largest reach, at the

expense of modifying both the set-associative and superpage TLB.

4.3.1. Overall operation. Figure 6 illustrates CoLT-All’s opera-

tion when all the TLBs experience a miss. In step 1, the page

walk has occurred and the coalescing hardware has determined

the amount of contiguity present in the cache line. In then checks

this contiguity to see how it compares to a threshold. If it is lower

than a threshold (step 2), this means that the contiguity can be ac-

commodated by the indexing scheme of the set-associative TLBs.

For example, suppose the contiguity is three pages and we use

an 8-set TLB with VPN[4-2] for indexing (allowing coalescing of

up to four translations). In this case, the coalesced entry is allo-

cated into the set-associative L1 and L2 TLBs. However the con-

tiguity may be higher than the threshold and the amount that the

set-associative TLBs can accommodate. In our example, the conti-

guity may be five. In this case, the entry is coalesced and brought

into the superpage-TLB. At the same time, because the superpage-

TLB is small, useful coalesced entries may be frequently evicted.

Therefore, like CoLT-FA, we allocate an entry at this point into

the L2 TLB as well. Unlike CoLT-FA however, our set-associative

L2 TLB can now also handle coalesced entries (albeit with smaller

levels of coalescing permissible by its choice of index bits). There-

fore, CoLT-All brings in as much of this coalesced entry as possi-

ble into the L2 TLB, unlike CoLT-FA which brings just the re-

quested translation. Finally, in step 4, the new allocated superpage

entry may be coalesced with already-resident entries.

4.3.2. Lookup, replacement, invalidation, and attributes.

While lookups operate similarly to CoLT-SA and CoLT-FA, the

only difference is that it is possible for an entry to be resident in

both the set-associative and fully-associative TLBs. While this

occurs only rarely in practice, there are no correctness issues asso-

ciated with this. Furthermore, there are no changes in replacement,

invalidation, and attribute policies.

5 Methodology

We now detail the infrastructure and workloads used to quan-

tify real-system contiguity and CoLT’s effectiveness at leveraging

this contiguity to eliminate TLB misses. Our analysis focuses on

data pages since data references cause far more misses than in-

struction references [10, 27].

5.1 RealSystem Characterizations of Page Allo
cation Contiguity

5.1.1. Experimental platform and methodology. We use a sys-

tem with a 64-bit Intel i7 processor, 64-entry L1 TLBs, and a 512-

entry L2 TLB, a 32KB L1 cache, a 256KB L2 cache, a 4MB last-

level cache (LLC), and 3GB of main memory. Furthermore, we

run Fedora 15 (Linux 2.6.38).

To measure contiguity, we modify the kernel to scan the page

table looking for instances of contiguous address translations.

We walk the page table every five seconds, capturing contiguity

6

Benchmark Suite THS on THS off
L1/L2 MPMI L1/L2 MPMI

Mcf Spec 56550/28600 95600/49230

Tigr BioB. 19000/18150 26950/18860

Mummer BioB. 12910/11450 14760/12970

CactusADM Spec 6610/8140 8420/6930

Astar Spec 8480/4660 17390/11240

Omnetpp Spec 8410/2730 34040/8080

Xalancbmk Spec 2670/2150 14120/2100

Povray Spec 7010/630 7310/630

GemsFDTD Spec 1300/620 8030/3620

Gobmk Spec 710/410 1550/510

FastaProt BioB. 460/300 610/300

Sjeng Spec 1840/200 3860/440

Bzip2 Spec 4070/150 7120/270

Milc Spec 120/90 3780/1820

Table 1. Summary of benchmarks used in our studies.

changes through the benchmark run. Our original definition of

contiguity is based only on page numbers; however, we now addi-

tionally require that contiguous translations must share the same

page attributes and flags. While this eases the hardware implemen-

tation of CoLT by allowing for the same set of attribute bits per

coalesced entry, contiguity would be even higher if this constraint

were relaxed.

To study the effect of memory compaction, we use the Linux

defrag flag. Enabling this flag triggers the memory compaction

daemon both on page faults and as system background activity.

Disabling this flag greatly reduces the number of times the mem-

ory compaction daemon runs. In tandem, we enable and disable

THS to study the impact of superpaging. We also ensure that our

system is realistically fragmented by using a machine that has al-

ready run a number of applications (eg. web browsers, network

clients, office utilities) for two months. To further load the sys-

tem, we run memhog, a memory fragmentation utility [12], with

our workloads. We study scenarios where memhog fragments 25%

and 50% (a highly fragmented system when combined with the

other background activities) of the memory. In all, we thus study

twelve system configurations. Due to space constraints, this paper

focuses on the following specific ones:

1. THS on, normal memory compaction, no memhog: this is

the current default setting for Linux.

2. THS off, normal memory compaction, no memhog: this

shows contiguity without superpaging.

3. THS off, low memory compaction, no memhog: conser-

vative case for contiguity because neither THS no memory com-

paction occur. The buddy allocator struggles to find contiguous

physical blocks.

4. THS on, normal memory compaction, memhog: we test the

effect of system load on the default Linux setting by assigning 25%

and 50% of system memory to memhog.

5. THS off, normal memory compaction, memhog: shows the

impact of fragmentation without superpaging.

5.1.2. Evaluation workloads. We study system contiguity on the

Spec 2006 benchmarks [1] and bioninformatics workloads from

Biobench [2] in Table 1. We run each of the workloads with their

maximum data sets (for Spec, this corresponds to Ref) to com-

pletion. From the real-system runs, we use on-chip performance

counters to track L1 and L2 TLB misses per million instructions

(MPMI) when THS support is enabled and disabled. The bench-

marks are ordered from highest to lowest THS on L2 TLB MP-

MIs. Mcf, Tigr, Mummer, CactusADM, and Astar see particularly

high TLB MPMIs. While enabling superpaging does reduce TLB

misses for some workloads, it alone is insufficient. For example,

Mcf still has an L2 TLBMPMI of 57Kwith THS on, while Mummer

is unchanged.

5.2 SimulationBased CoLT Evaluations

5.2.1. Simulated system. Past work on TLBs [5, 6, 9, 27] focuses

on miss rates rather than performance because it is infeasible to

run memory-intensive applications for long enough durations to

provide performance numbers. We also study miss rates, but con-

sider performance too. We use a two-step evaluation to quantify

changes in hit rate and to then offer performance numbers feasible

for simulations.

Like the bulk of recent work on TLB analysis, we first use a

trace-based approach to analyze miss rates [5, 6, 9, 10]. We ex-

tract detailed memory traces by simulating an x86 processor on

Simics [30]. These highly detailed traces maintain logs of both

data and instruction references at the micro-op level. Our traces

also capture full-system effects by running benchmarks on a Linux

2.6.38 kernel. We hack the simulated kernel to provide full page

table walk details for every single memory reference (this includes

the virtual page, the physical page, and all attribute bits). We set

the kernel to its default configuration of using THS and normal

memory compaction. As we will show, since contiguity is present

across all kernel configurations, CoLT will be effective across the

range of superpaging and memory compaction settings.

We run the traces through a highly-detailed custom memory

simulator. We need to stress our TLBs using simulated workloads

in a manner that matches real-system stress; therefore, we use 32-

entry and 128-entry L1 and L2 4-way set-associative TLBs. These

sizes are chosen as they produce simulated load within 10% of the

load experienced by a real system. Our baseline system also as-

sumes a 16-entry fully-associative superpage TLB. As previously

detailed, CoLT-FA and CoLT-All reduce this size to 8 entries in

order to provide conservative performance improvement data and

negate the impact of slightly more complex lookups. Furthermore,

unlike past work [9, 11], we model a more realistic TLB hierarchy

with 22-entry MMU caches, accessed on TLB misses to acceler-

ate page table walks [5]. Finally, we assume a three-level cache

hierarchy similar to the Intel Core i7 (32KB L1 cache, 256KB L2

cache, 4MB LLC).

Having assessed miss rates, we now go beyond prior work and

the study the performance implications of our approach. We use

the Pin-based [20] CMP$im [18] simulation framework to model a

4-way out-of-order processor with a 128-entry reorder buffer. The

processor’s TLB and cache parameters match those of our custom

trace module. Unfortunately, the simulation speeds of this detailed

microarchitectural framework are slow; hence we cannot use it to

run full Linux distributions with the memory allocation behavior

necessary to study CoLT on sufficiently long-running, large-data

applications. However, while this simulator does not maintain

virtual-to-physical address translations, it does observe the per-

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(20.3)
 Tigr(55.55)

 Mummer(6.2)
 Cactus(149.7)

 Astar(3.89)

Figure 7. THS on, normal memory
compaction contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(32.05)
 Xalanc(1.88)
 Povray(1.85)

 Gems(8.1)
 Gobmk(8.9)

Figure 8. THS on, normal memory
compaction contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fastaprot(4.79)
 Sjeng(116.75)

 Bzip2(82.74)
 Milc(84.09)

 Average(41.19)

Figure 9. THS on, normal memory
compaction contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(11.14)
 Tigr(2.71)

 Mummer(8.1)
 Cactus(1.79)

 Astar(1.69)

Figure 10. THS off, normal memory
compaction contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(48.5)
 Xalanc(2.23)
 Povray(1.64)
 Gems(12.1)

 Gobmk(1.83)

Figure 11. THS off, normal memory
compaction contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fasta(1.013)
 Sjeng(104)

 Bzip2(59.55)
 Milc(1.88)

 Average(18.43)

Figure 12. THS off, normal memory
compaction contiguity CDF.

formance effects of TLB misses by tracking the allocated virtual

pages. In tandem with the miss rate eliminations extracted from

our trace-based approach, this allows us to interpolate CoLT’s ac-

tual performance gains. This interpolation strategy is valid for

two reasons. First, TLB miss penalties (page walks) are serial-

ized as only one page walk can typically be handled at a time

[9, 11]. Hence, TLB misses lie on the execution’s critical path.

Second, our interpolation approach is actually conservative as it

does not account for the instruction replays that would likely oc-

cur on TLB misses. Therefore, our projected performance benefits

would likely increase on a real system.

5.2.2. Evaluation workloads. We use the workloads from Table

1. However, due to slow simulation speeds, we use Simpoints [24]

that total to one billion instructions per workload. These simpoints

include operating system effects captured by Simics and assume

realistic inputs (for Spec, this corresponds to Ref).

6 Characterizations of Page Allocation Contiguity

We now quantify how the buddy allocator, memory com-

paction, THS, and system load affect application contiguity on a

real system. We show that page allocation contiguity always exists

regardless of the kernel configuration.

We begin by discussing the cumulative density functions

(CDFs) from Figures 7 to 15. These graph the distribution of conti-

guities experienced by non-superpage pages. Note that contiguity

(the x-axis) is presented as a log scale.

6.1 Superpaging, Memory Compaction

Figures 7, 8, and 9, ordering the benchmarks from highest to

lowest TLB MPMI, show contiguity assuming default Linux ker-

nel settings (superpaging and normal memory compaction). The

legend provides average contiguity numbers.

Figures 7, 8, and 9 show that there is heavy contiguity across

the workloads that cannot be exploited by superpages. On average,

pages are in 41-contiguity groupings. Furthermore, there can be

large instances of contiguity above the average. For example, most

CDFs see many 64 to 256-contiguity instances.

Interestingly, there exist many cases of 512 and 1024-page con-

tiguity. Since THS is enabled, one might initially expect that these

should be treated as superpages. However, this contiguity does

not translate to superpages for two reasons. First, these mem-

ory chunks are not superpage-aligned. Second, THS currently

supports superpaging for only anonymous pages created through

malloc calls; as such, a number of file-backed pages created from

are not superpage candidates. Overall, we find that 15% of non-

superpage pages actually have over 512-page contiguity.

Fortunately, Figures 7, 8, and 9 enjoy particularly high contigu-

ity for TLB-stressing benchmarks. Mcf, Tigr, and CactusADM see

tens to hundreds of contiguous pages, indicating their amenabil-

ity to TLB coalescing. For a number of these benchmarks, such

as Mcf, high contiguity arises because malloc and mmap calls are

made at the beginning of the execution to allocate large hash-based

data structures. These structures span megabytes of space, which

the buddy allocator ensures maps to contiguous physical pages.

6.2 No Superpaging, Memory Compaction

Figures 10 to 12 show how contiguity changes when superpag-

ing support is disabled. Average contiguity drops compared to

THS on from 41 to 18, for two reasons. First, THS optimistically

creates as many 2MB page as possible. While these 2MB pages

eventually get broken into 4KB pages due to system load, they do

leave large amounts of smaller, residual contiguity. Without THS,

contiguity is not generated this way. Second, disabling THS dras-

tically reduces memory compaction daemon invocations. Never-

theless, sufficient exploitable intermediate contiguity remains (in

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Mcf(5.01)
 Tigr(2.71)

 Mummer(1.3)
 Cactus(1.6)
 Astar(1.26)

Figure 13. THS off, low memory com-
paction contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Omnetpp(1.2)
 Xalanc(1.775)
 Povray(1.82)

 Gems(8.4)
 Gobmk(1.68)

Figure 14. THS off, low memory com-
paction contiguity CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256 1024

Contiguity

 Fasta(1.1)
 Sjeng(96.6)

 Bzip2(89.09)
 Milc(1.88)

 Average(15.38)

Figure 15. THS off, low memory com-
paction contiguity CDF.

the tens of pages, around 18). Furthermore, heavy TLB-pressure

benchmarks like Mcf and Mummer see very high contiguity.

Surprisingly, some benchmarks like Omnetpp and Sjeng actu-

ally see higher contiguity without THS. This occurs because the

lack of THS reduces superpages allocated to other running pro-

cesses. As a result, the pages allocated to our workloads remain

unfragmented and contiguous.

6.3 Superpaging, Low Memory Compaction

Figures 13, 14, and 15 present a worst-case scenario setting for

Linux, where THS is turned off and memory compaction is greatly

reduced via disabling the defrag kernel flag. While no kernel

uses or recommends this setting, we study it to ensure that suffi-

cient contiguity exists, even when there are almost no mechanisms

to explicitly generate it. In fact, our results show that on average,

contiguity drops only marginally compared to the THS off, normal

memory compaction case to 15 pages on average. While important

benchmarks like Mcf, Mummer, and Omnetpp do lose compared to

the prior settings, they retain sufficiently high intermediate conti-

guity. For example, even though Mummer’s average contiguity is

now 1.3, roughly 50% of its 4KB pages enjoy 4-page contiguity.

Correctly exploiting this gives our TLBs a 4× reach.

6.4 Superpaging, Memory Compaction, Memhog

We now focus on the impact of system load on fragmentation

and contiguity. Figure 16 shows how contiguity is affected when

memhog runs with each benchmark and fragments 25% and 50% of

system memory. Our studies have shown that combined with the

other running system processes, memhog with 50% heavily frag-

ments almost all memory and causes page fault rates to greatly

increase. We assume default Linux settings (THS enabled, normal

memory compaction).

One might initially expect higher load to lower contiguity.

Surprisingly, we find the opposite trend to hold when using

memhog(25%), with contiguity rising from 41 to roughly 43 pages

on average. For some benchmarks, the gain is markedly high; for

example, Mcf and GemsFDTFD contiguities are boosted by an or-

der of magnitude. The primary reason for this is that higher load

invokes the memory compaction daemon more often. This in turn

provides the buddy allocator more contiguous physical blocks.

Greatly fragmenting the system with memhog(50%) however,

does reduce contiguity. However, even this intermediate contiguity

is relatively high, averaging close to 10 pages. For heavy TLB-

pressure benchmarks like Mcf and Mummer, this configuration still

achieves higher contiguity than without system load. As such, the

buddy allocator, in tandem with memory compaction, manages to

actually leverage the additional load to increase contiguity.

6.5 No Superpaging, Memory Compaction,
Memhog

This represents the scenario where THS is turned off despite

high system load. While kernel settings would not typically

allow this, we use this setting to stress-test our measurements.

We find that even under the pessimistic setting of no THS and

memhog(50%), the average contiguity is above 5. TLB coalesc-

ing can thus potentially provide a 5× reach.

6.6 Summary of Results

Three primary conclusions can be drawn from our real-system

characterizations. First, under every single configuration, even

those that are unrealistically severe, the buddy allocator, com-

paction daemon, and THS support succeed in inadvertently gener-

ating great intermediate contiguity. Second, system load can have

surprising implications on contiguity, often increasing it. For some

benchmarks that suffer from high TLB misses, such as Mcf, this

is a promising observation. Third, superpages are ill-equipped to

handle this contiguity. Therefore, coalescing techniques to harness

this intermediate contiguity are warranted.

7 CoLT Evaluations

We now evaluate CoLT’s benefits, focusing on per-application

miss rate reductions and performance gains.

7.1 TLB Miss Rate Analysis

7.1.1. CoLT TLB miss rates. Figure 18 quantifies CoLT’s TLB

miss reductions. Benchmarks are ordered from highest to lowest

TLB miss rates. We first capture the number of L1 and L2 TLB

misses for a baseline configuration with 32-entry and 128-entry

L1 and L2 TLBs (4-way) and a 16-entry superpage TLB. Note

that we count misses for both the set-associative L1 TLB and the

superpage TLB as L1 TLB misses since they are checked in paral-

lel and have the same hit time. After recording these misses, we

then run the same benchmarks on configurations with CoLT-SA,

CoLT-FA, and CoLT-All, tracking the new TLB miss rates. We as-

sume that CoLT-SA uses VPN[4-2] and VPN[6-2] for L1 and L2

9

0

10

20

30

40

50

M
cf

T
ig

r

M
u

m
m

e
r

C
a

ct
u

sa
d

m

A
st

a
r

O
m

n
e

tp
p

X
a

la
n

cb
m

k

P
o

v
ra

y

G
e

m
s

G
o

b
m

k

F
a

st
a

p
ro

t

S
je

n
g

B
zi

p
2

M
il

c

A
v

e
ra

g
eA
v
e

ra
g

e
 C

o
n

ti
g

u
it

y
No Memhog Memhog (25) Memhog (50)

295 55 150 117 82 118 84

Figure 16. Average contiguity for THS on, normal memory
compaction with varying Memhog.

0

5

10

15

20

M
cf

T
ig

r

M
u

m
m

e
r

C
a

ct
u

sa
d

m

A
st

a
r

O
m

n
e

tp
p

X
a

la
n

cb
m

k

P
o

v
ra

y

G
e

m
s

G
o

b
m

k

F
a

st
a

p
ro

t

S
je

n
g

B
zi

p
2

M
il

c

A
v

e
ra

g
e

A
v
e

ra
g

e
 C

o
n

ti
g

u
it

y

No Memhog Memhog (25) Memhog (50)

43 32 49 104 97 54 60

Figure 17. Average contiguity for THS off, normal mem-
ory compaction with varying Memhog.

set selection, meaning that up to four translations can be coalesced

per entry (we will later show the effect of using more aggressive in-

dexing). We also conservatively assume 8-entry fully-associative

TLBs when using CoLT-FA and CoLT-All.

First and foremost, Figure 18 shows that all three CoLT

schemes improve every single benchmark by eliminating large

chunks of the baseline misses. On average, CoLT-SA eliminates

40% of both L1 and L2 TLBs misses, while CoLT-FA and CoLT-

All do even better, eliminating around 55% of both L1 and L2

misses. Second, Figure 18 shows that many of the benchmarks

experiencing TLB pressure gain particularly from CoLT. For ex-

ample, Mcf, CactusADM, and Astar all eliminate vast amounts of

their TLB misses. In fact, Astar almost achieves perfect TLBs

with no misses with CoLT-FA and CoLT-All.

Third, there is a correlation between system contiguity and

effectiveness of CoLT. For example, Mcf, Bzip2, Milc, and

CactusADM, which all see more instances of 20-page contiguity

on average, can coalesce large amounts of translations, increasing

TLB reach substantially. However, contiguity alone does not guar-

antee coalescing success; for coalescing to be effective, contigu-

ous entries must actually be used close together in time. Without

this temporal proximity, a coalesced entry will be evicted from the

TLB before multiple member translations are used. This explains

the lower benefits of Tigr, which sees 10% TLB miss elimination

rates despite a contiguity of over 50 pages on average.

Fourth, Figure 18 shows that leveraging the superpage TLB

in CoLT-FA and CoLT-All provides 10-15% gains over CoLT-SA

on average. Benchmarks like Mcf and Fastaprot benefit partic-

ularly from this. These gains are achieved despite dropping from

a 16-entry to an 8-entry structure. We find that the primary reason

for this is that even with THS on, superpages are used sparingly.

Therefore, a surprisingly high number of entries remain wasted in

the fully-associative TLB in the baseline case. Instead, CoLT-FA

and CoLT-All use these entries and can even perform unrestricted

coalescing on them, unlike the set-associative TLBs.

The difference between CoLT-FA and CoLT-All remains more

nuanced. We find generally that both schemes eliminate roughly

55% of TLB misses on average. Generally on the more TLB-

intensive benchmarks (eg. Mcf, Tigr, Mummer, CactusADM),

CoLT-All outperforms CoLT-FA slightly. However, in many

benchmarks, CoLT-All falls surprisingly short of CoLT-FA. This

occurs because CoLT-FA is better able to coalesce translations that

reside across multiple LLC cache lines. Essentially, in these bench-

marks only a few translations in a single cache line are coalesci-

ble with translations from another cache line. In CoLT-FA, since

all the translations are brought into the fully-associative structure,

these entries are coalesced. In CoLT-All however, if the cache

line that maintains only a few coalescible translations falls below

the pre-defined threshold, they are inserted into the set-associative

TLB and can therefore never be merged with the second cache

line’s translations (which sits in the fully-associative TLB). This

reduces CoLT-All’s hit rates compared to CoLT-FA.

Overall, all CoLT designs eliminate a large fraction of TLB

misses. We now focus on implementation details of the various

CoLT designs to lend greater insight on our gains.

7.1.2. Impact of CoLT-SA’s indexing scheme on TLB miss

rates. Our initial CoLT-SA results assume that we use VPN[4-2]

and VPN[6-2] for L1 and L2 set selection. This limits the amount

of coalescing to four translations per entry. While additional con-

tiguity could be coalesced by further left-shifting the index bits,

this also increases conflict misses. Figure 19 studies these op-

posing forces on the 4-way associative TLBs by left-shifting the

traditional index bits by one bit (VPN[3-1] and VPN[5-1] for L1

and L2 TLBs), two bits, and three bits (VPN[5-3] and VPN[7-3]

for L1 and L2 TLBs). These correspond to maximum allowable

coalescing of two, four and eight translations.

Figure 19 clearly shows that left-shifting the index bits by two

provides the best balance between coalescing opportunity and con-

flict misses. Below this (left-shifting by one bit), we can only

coalesce two entries, restricting our TLB miss elimination rates.

However, left-shifting by three bits actually increases TLB misses

in many cases due to the additional conflict misses. In general, un-

less there is very high contiguity, like for Mummer, Tigr, and Milc,

left-shifting the index bits by three is overly-aggressive. Hence-

forth, we assume a left-shit of two bits for our indexing scheme.

7.1.3. Impact of bringing missing entries into L2 TLB for

CoLT-FA and CoLT-All. As previously detailed, while CoLT-FA

and CoLT-All bring coalesced entries into the fully-associative,

superpage TLB, they also leverage the L2 TLB. For CoLT-FA,

when a coalesced entry is brought into the superpage TLB, just

the requested entry is also brought into the L2 TLB; for CoLT-

All, a coalesced entry (where the coalescing amount is restricted

by the index scheme) is brought into the L2 TLB. As we previ-

ously noted, this is useful since the superpage TLB is small (8-

entry); as a result, only entries with high levels of coalescing are

maintained there. As such, intermediate-level coalesced entries

are often evicted. Bringing these entries into the L2 TLB as well

increases the chance that these they remain available if necessary.

For CoLT-FA, we have run experiments to compare the case

when (1) a coalesced entry is brought into the superpage TLB and

10

0
20
40
60
80

100

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

Mcf Tigr Mumm. Cact. Astar Omnet.Xalanc.

%
 B

a
se

li
n

e
 M

is
se

s L1 L2

0
20
40
60
80

100

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

S
A

F
A

A
ll

Povray Gems. Gobmk Fasta. Sjeng Bzip2 Milc Avg.

%
 B

a
se

li
n

e
 M

is
se

s L1 L2

Figure 18. Percentage of baseline TLB misses eliminated
using CoLT-SA, CoLT-FA, and CoLT-All.

-50
-25

0
25
50
75

100

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Mcf Tigr Mumm. Cact. Astar Omnet. Xal.

%
 B

a
se

li
n

e
 M

is
se

s L1 L2

-50
-25

0
25
50
75

100

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Pov. Gems. Gob. Fasta. Sjeng Bzip2 Milc Avg.

%
 B

a
se

li
n

e
 M

is
se

s L1 L2

Figure 19. Percentage of baseline TLB misses eliminated
by CoLT-SA when left-shifting the index by 1, 2, and 3 bits.

just the translation triggering the coalescing is also brought into

the L2 TLB, and (2) a coalesced entry is brought into the super-

page TLB but the L2 TLB remains unaffected. We have found that

on average, (1) outperforms (2) by an additional miss elimination

of 10-15% for both L1 and L2 miss counts. We see particularly

high gains with our approach on workloads with relatively lower

contiguity such as Povray, since the small superpage TLB cannot

coalesce a high enough number of entries to prevent eviction.

For CoLT-All, we have similarly run experiments to compare

the case when (1) a coalesced entry is brought into the superpage

TLB and its smaller coalesced version (a maximum of coalescing

of four translations in our design) is brought into the L2 TLB, and

(2) a coalesced entry is brought into the superpage TLB but the

L2 TLB remains unaffected. We see again that our approach, (1)

outperforms (2) by an average of 10-20% TLB miss eliminations.

7.1.4. Studying CoLT’s effectiveness at higher associativities.

We now consider CoLT effectiveness as TLB associativity is var-

ied. A number of past studies have quantified how effectively

increasing TLB associativity eliminates misses [13]. Generally,

these studies have concluded that the slightly higher TLB hit rates

are offset by huge power dissipation problems [7]. These obser-

vations are largely responsible for the relatively low associativity

(typically 2-way or 4-way) supported on current TLBs.

CoLT, however, increases the benefits of higher set-

associativity since the indexing scheme of the TLB can be more

aggressively changed without as significant an increase in conflict

misses. Overall, this allows higher levels of coalescing. Figure

20 compares how many L2 TLB misses in a 4-way 128-entry

L2 TLB can be eliminated by CoLT-SA (4-way, CoLT-SA), by

varying the associativity to 8-way but not allowing coalescing (8-

way, No CoLT), and by allowing CoLT on the 8-way TLB (8-way,

CoLT-SA). Note that all configurations use a fixed TLB size de-

spite associativity changes.

First, Figure 20 shows that merely increasing the associativ-

ity to 8-way only eliminates 10% of the baseline L2 misses. In

fact, even 4-way L2 TLBs with low-overhead CoLT-SA far exceed

the benefits of higher associativity, eliminating 40% of baseline

misses on average.

Figure 20 shows however, that the 8-way configuration aug-

mented with CoLT-SA does provide significant benefits. CoLT-SA

now eliminates 60% of the baseline misses on average, a substan-

tial improvement over the other two scenarios. While a detailed

power analysis is beyond the scope of this work, the performance,

power ratio may therefore become more amenable with CoLT.

7.2 Performance Analysis

Up to this point, we have evaluated the benefits of CoLT in

terms of miss rate eliminations. While this does indicate CoLT’s

effectiveness, we now focus on performance numbers which track

how much faster each application runs with coalescing. Figure

21 details, for every benchmark, performance improvements from

CoLT-SA, CoLT-FA, and CoLT-All. It also provides data on per-

formance improvements that would occur with absolutely perfect,

100%-hit rate TLBs. The latter serves as a comparison point to de-

termine how effectively CoLT performs. Once again, the baseline

is a system with 4-way 32-entry and 128-entry L1 and L2 TLBs,

and a 16-entry superpage TLB. CoLT-FA and CoLT-All conser-

vatively reduce the superpage TLBs to 8 entries. Moreover, as

previously detailed, we simulate a 4-way out-of-order processor.

Figure 21 shows that perfect TLBs would improve most bench-

mark runtimes by over 10% (eg. all except Gobmk and Sjeng in

our benchmarks). In fact, Xalancbmk sees a huge 115% improve-

ment in performance from TLBs that achieve 100% hit rate. These

numbers indicate that TLB miss handling does significantly slow

down benchmarks. This also implies that CoLT strategies have the

potential to significantly improve performance.

Fortunately, Figure 21 shows that all of the CoLT approaches

do indeed boost application performance significantly. On average,

CoLT-SA achieves a 12% performance improvement, while CoLT-

FA and CoLT-All achieve 14% improvements. On benchmarks

like Xalancbmk, the performance improvements hover around

60% of runtime. Across other workloads like Mcf, CactusADM,

Astar, Omnetpp, and Bzip2, at least one of the CoLT configura-

tions improves performance over 10%. We anticipate that as appli-

cations with even larger working sets or virtualization are consid-

ered, these performance improvements will be even higher.

Figure 21 indicates that CoLT-SA, which has the simplest im-

plementation, performs comparably to CoLT-FA and CoLT-All.

Nevertheless, benchmarks like Omnetpp and Bzip2 do see boosts

from CoLT-FA/CoLT-All. Because we assume smaller 8-entry

fully-associative TLBs, we expect CoLT-FA and CoLT-All results

to be even higher with more realistically-sized superpage TLBs.

11

0
20
40
60
80

100

M
cf

T
ig

r

M
u

m
m

.

C
a

ct
.

A
st

a
r

O
m

n
e

t.

X
a

la
n

c.

%
 4

-w
a

y,
 n

o
 C

o
LT

M
is

se
s

4-way, CoLT-SA 8-way, No CoLT 8-way, CoLT-SA

0
20
40
60
80

100

P
o

v
ra

y

G
e

m
s.

G
o

b
m

k

F
a

st
a

.

S
je

n
g

B
zi

p
2

M
il

c

A
v
g

.

%
 4

-w
a

y,
 n

o
 C

o
LT

M
is

se
s

Figure 20. Percentage of baseline misses eliminated by
CoLT-SA when increasing associativity.

0
5

10
15
20
25

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

Mcf Cact. Astar Omnet. Xalanc. Povray

P
e

rf
.

Im
p

ro
v
e

m
e

n
t

0
5

10
15
20
25

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

P
e

rf
e

ct
C

o
LT

-S
A

C
o

LT
-F

A
C

o
LT

-A
ll

Gems. Gobmk Sjeng Bzip2 Milc Avg.

P
e

rf
.

Im
p

ro
v
e

m
e

n
t

115 58 60 63

Figure 21. CoLT-SA, CoLT-FA, and CoLT-All perfor-
mance improvements compared to perfect TLBs.

8 Conclusion

This paper proposes and designs Coalesced Large-Reach TLBs

capable of exploiting address translation contiguity to achieve high

reach. Due to a variety of OS memory management techniques in-

volving buddy allocators, memory compaction, and superpaging,

large amounts of translation contiguity are generated, even under

heavy system load. While this contiguity typically cannot be ex-

ploited to generate superpages, CoLT provides lightweight hard-

ware support to detect this behavior. As a result, large TLB miss

eliminations are possible (on average, 40% to 58%), translating to

performance improvements of 14% on average.

This work has a number of interesting implications for archi-

tects, system designers, and OS designers. We showcase TLB opti-

mization techniques that architects can readily incorporate in exist-

ing processors. System designers and OS designers can tune their

software systems to generate contiguity suitable for CoLT. For ex-

ample, while superpages can overwhelm systems performance due

to their overheads, CoLT provides alternate mechanisms to boost

performance. We believe that CoLT will become even more crit-

ical as applications have increasingly large memory requirements

and trends like virtualization become prevalent.

9 Acknowledgments

We thank the anonymous reviewers for their feedback. We also

thank William Katsak for his help in modifying the Linux kernel

for our studies. Finally, we thank Viji Srinivasan for her sugges-

tions on improving the final version of the paper. The authors ac-

knowledge the support of Rutgers University’s Office of the Vice

President for Research and Economic Development. This work

was supported in part by their Faculty Research Grant Awards.

References

[1] “The Standard Performance Evaluation Corporation. SPEC
CPU2006 Results,” http://www.spec.org/cpu2006.

[2] K. Albayraktaroglu et al., “BioBench: A Benchmark Suite of Bioin-
formatics Applications,” ISPASS, 2005.

[3] AMD Corporation, “AMD Programmer’s Manual,” vol. 2, 2007.
[4] Andrea Arcangeli, “Transparent Hugepage Support,” KVM Forum,

2010.
[5] T. Barr, A. Cox, and S. Rixner, “Translation Caching: Skip, Don’t

Walk (the Page Table),” ISCA, 2010.

[6] T. Barr, A. Cox, and S. Rixner, “SpecTLB: A Mechanism for Specu-
lative Address Translation,” ISCA, 2011.

[7] A. Basu, M. Hill, and M. Swift, “Reducing Memory Reference En-
ergy with Opportunistic Virtual Caching,” ISCA, 2012.

[8] R. Bhargava et al., “Accelerating Two-Dimensional Page Walks for
Virtualized Systems,” ASPLOS, 2008.

[9] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-Level
TLBs for Chip Multiprocessors,” HPCA, 2010.

[10] A. Bhattacharjee and M. Martonosi, “Characterizing the TLB Behav-
ior of Emerging Parallel Workloads on Chip Multiprocessors,” PACT,
2009.

[11] A. Bhattacharjee and M. Martonosi, “Inter-Core Cooperative TLB
Prefetchers for Chip Multiprocessors,” ASPLOS, 2010.

[12] D. Bovet and M. Cesati, “Understanding the Linux Kernel,” 2005.
[13] J. B. Chen, A. Borg, and N. Jouppi, “A Simulation Based Study of

TLB Performance,” ISCA, 1992.
[14] D. Clark and J. Emer, “Performance of the VAX-11/780 Translation

Buffers: Simulation and Measurement,” ACM Transactions on Com-

puter Systems, vol. 3, no. 1, 1985.
[15] Z. Fang et al., “Online Superpage Promotion with Hardware Sup-

port,” HPCA, 2001.
[16] N. Ganapathy and C. Schimmel, “General-Purpose Operating Sys-

tem Support for Multiple Page Sizes,” USENIX, 1998.
[17] Intel Corporation, “TLBs, Paging-Structure Caches and their Invali-

dation,” Intel Technical Report, 2008.
[18] A. Jaleel et al., “CMP$im: A Pin-based On-the-fly Multi-core Sim-

ulator,” 4th Workshop on Modeling, Benchmarking, and Simulation,
2008.

[19] G. Kandiraju and A. Sivasubramaniam, “Going the Distance for TLB
Prefetching: An Application-Driven Study,” ISCA, 2002.

[20] C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation,” PLDI, 2005.

[21] C. McCurdy, A. Cox, and J. Vetter, “Investigating the TLB Behav-
ior of High-End Scientific Appplications on Commodity Multipro-
cessors,” ISPASS, 2008.

[22] D. Nagle et al., “Design Tradeoffs for Software-Managed TLBs,”
ISCA, 1993.

[23] J. Navarro et al., “Practical, Transparent Operating System Support
for Superpages,” OSDI, 2002.

[24] E. Perelman et al., “Using SimPoint for Accurate and Efficient Sim-
ulation,” SIGMETRICS, 2003.

[25] T. Romer et al., “Reducing TLB and Memory Overhead Using On-
line Superpage Promotion,” ISCA, 1995.

[26] M. Rosenblum et al., “The Impact of Architectural Trends on Oper-
ating System Performance,” SOSP, 1995.

[27] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-Based TLB
Preloading,” ISCA, 2000.

[28] M. Talluri and M. Hill, “Surpassing the TLB Performance of Super-
pages with Less Operating System Support,” ASPLOS, 1994.

[29] M. Talluri et al., “Tradeoffs in Supporting Two Page Sizes,” ISCA,
1992.

[30] Virtutech, “Simics for Multicore Software,” 2007.

12

