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Abstract—This paper analyzes the trade-offs in architecting
stacked DRAM either as part of main memory or as a
hardware-managed cache. Using stacked DRAM as part of
main memory increases the effective capacity, but obtaining
high performance from such a system requires Operating
System (OS) support to migrate data at a page-granularity.
Using stacked DRAM as a hardware cache has the advantages
of being transparent to the OS and perform data management
at a line-granularity but suffers from reduced main memory
capacity. This is because the stacked DRAM cache is not part
of the memory address space. Ideally, we want the stacked
DRAM to contribute towards capacity of main memory, and
still maintain the hardware-based fine-granularity of a cache.

We propose CAMEO, a hardware-based CAche-like MEmory
Organization that not only makes stacked DRAM visible as part
of the memory address space but also exploits data locality on
a fine-grained basis. CAMEO retains recently accessed data
lines in stacked DRAM and swaps out the victim line to off-
chip memory. Since CAMEO can change the physical location
of a line dynamically, we propose a low overhead Line Location
Table (LLT) that tracks the physical location of all data lines.
We also propose an accurate Line Location Predictor (LLP)
to avoid the serialization of the LLT look-up and memory
access. We evaluate a system that has 4GB stacked memory
and 12GB off-chip memory. Using stacked DRAM as a cache
improves performance by 50%, using as part of main memory
improves performance by 33%, whereas CAMEO improves
performance by 78%. Our proposed design is very close to an
idealized memory system that uses the 4GB stacked DRAM as a
hardware-managed cache and also increases the main memory
capacity by an additional 4GB.

I. INTRODUCTION

Dynamic Random Access Memory (DRAM) technology

is facing several critical challenges in bandwidth and scal-

ability. The performance and scalability of main memory

system can be improved by combining DRAM with alter-

native memory technologies that provide either low power

(LPDRAM) [1], or high bandwidth (3D-DRAM) [2], or high

density (Phase Change Memory) [3, 4]. Future memory

systems are likely to consist of heterogeneous memory

technologies. One of the key questions in architecting such

heterogeneous memory systems is deciding the functional

role (e.g. cache or main memory) for different technology

components. In this paper, we consider the architectural

choices for a system that integrates 3D die-stacked DRAM

with commodity DRAM.

Stacked memory (also called as 3D-DRAM) is a revo-

lutionary memory technology that stacks multiple layers of

DRAM to provide a high-bandwidth low-latency memory

structure. Recent prototypes have shown that die-stacked

memory can be as large as several hundred megabytes

to a few gigabytes, and can provide almost an order of

magnitude of higher bandwidth compared to traditional

DRAM [2, 5, 6, 7]. However, the capacity of stacked DRAM

may not be sufficient to fully replace the off-chip com-

modity DRAM in a cost-effective manner. Thus, a practical

way to use stacked DRAM is to design it in conjunction

with commodity DRAM. Typically such a system would

architect the stacked DRAM as either a hardware-managed

cache [8, 9, 10, 11, 12, 13], or as part of the OS-visible

main memory [14, 15, 16, 17, 18].

Architecting stacked DRAM as a cache has the advantage

that it is transparent to the software and hence can be

employed without relying on support from software vendors.

Furthermore, the caching structure can be managed at a

fine granularity of CPU cache lines (typically 64 bytes),

which uses memory bandwidth efficiently. Recent propos-

als [10, 11, 12] have shown that stacked DRAM caches can

significantly improve performance. These proposals work

well when the capacity of the stacked DRAM is sufficiently

small compared to the commodity DRAM.

As the technology for manufacturing stack memory ma-

tures, the size of stacked memory can ultimately account for

a quarter or even half of the overall capacity of DRAM in

the memory system. So, for future systems, using stacked

DRAM only as a cache may become less attractive as the

stacked DRAM would not contribute towards the OS visible

main memory. As a result of the loss of memory capacity,

applications with large memory footprints can suffer higher

rate of page faults and thus suffer slowdown due to frequent

access to storage.

An alternative usage is to architect stacked DRAM as part

of the OS-visible main memory space. In such a memory

system, pages resident in stacked DRAM are serviced with

high bandwidth and low latency, while pages resident in

commodity DRAM are serviced with high latency and

low bandwidth. The performance of such a system can be

improved if the OS moves data for locality and ensures that
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Figure 1. Architecture for using Stacked DRAM (a) Hardware-managed Cache at Line granularity (b) OS-managed Two Level Memory,
at page granularity, and (C) Our proposal, CAMEO, with large memory capacity and transparent management at line-granularity.

frequently referenced pages are located in stacked DRAM.

However, this requires OS support, and dictates that the

granularity of data movement between stacked DRAM and

commodity DRAM must be at a page granularity (4KB in

our study). Unfortunately, not all lines within a given page

are necessarily referenced, which causes inefficient use of

memory system space and bandwidth. Therefore, moving

data at page granularity can cause bandwidth bottlenecks.

Ideally, we want the size of memory space seen by the

OS to be as large as possible, and we also want a cache-

like system that is able to perform data migration in a

fine-grained fashion. To this end, we propose a CAche-like

MEmory Organization (CAMEO). CAMEO is a hardware

mechanism that makes both stacked memory and commodity

memory form a continuous memory space as seen by the OS,

yet leverages the locality on a cache line basis. CAMEO

accomplishes this by retaining the recently accessed cache

line in stacked memory. On a reference to a line in off-chip

memory, CAMEO upgrades the requested line by swapping

it with another line from stacked memory. This allows

subsequent references to the upgraded line to be serviced

with low latency and high bandwidth.

Figure 1 illustrates CAMEO and also compares it to other

stacked memory designs.1 The system being considered has

two memory components: stacked memory and off-chip

memory. Stacked memory can be either a cache or seen

as a part of the memory space. Figure 1(a) shows the usage

of stacked DRAM as cache. The cache is organized at a

1At the first glance, CAMEO may seem like an exclusive cache, but it
is fundamentally different. Regardless of whether the cache is inclusive or
exclusive, it always maintains a subset of main memory. Cache exclusion
is a property of a “bigger cache” with respect to the “smaller cache”, and
not about main memory. For example, current AMD designs [19, 20] use
exclusive L3, but it does not mean that those designs increase main memory
capacity by the size of the L3 cache. It only means that the L3 does not
hold lines that are in L2 (main memory is still inclusive of all caches).
Designing a hardware cache that is exclusive of main memory is non-
trivial as it would mean that every miss in the cache be handled by the OS
(requiring remapping of pages), and will necessitate that data migration
happens at page granularity. In essence, this will degenerate into TLM-
Dynamic. To the best of our knowledge, no prior work has proposed a line
granularity hardware-managed cache, which is exclusive of main memory.

fine granularity of a cache line. However, stacked DRAM is

not part of the memory address space. Figure 1(b) shows the

usage of stacked DRAM as main memory. While this system

has larger visible memory space, obtaining data locality

requires OS support for page migration. Our goal is to

provide a full memory capacity while retaining the properties

of stacked-DRAM caches, as shown in Figure 1(c).

CAMEO relies on swapping of data lines to retain the ben-

efits of stacked memory. Since swapping changes the phys-

ical location of a given memory line, CAMEO maintains a

Line Location Table (LLT) to track the physical location of

all memory lines. As each cache line in the system requires

an entry in the LLT, the size of the LLT becomes quite large

(several tens of megabytes). It is impractical to store such

a large table on-chip in SRAM, or embed it within the L3

cache. Ideally, we want the LLT to have low overhead and

low latency. To keep our design practical, we propose to

co-locate the LLT entries with data lines in stacked DRAM.

This design not only has the advantage of avoiding extra

SRAM storage for maintaining LLT, but also of avoiding the

serialization of LLT lookup for data lines that are resident

in stacked DRAM.

Unfortunately, for data lines that are not resident in

stacked memory, CAMEO suffers from high latency as

memory access gets serialized with LLT lookup. To avoid

this serialization, we propose a Line Location Predictor

(LLP). The LLP predicts the physical address of the cache

line, and if the cache line is predicted to be in off-chip

memory, CAMEO fetches the predicted location in parallel

with the LLT access. The prediction is verified from the LLT

entry, and if found correct, the data line is used. We observe

that the history of the last location (based on instruction

addresses) serves as a good predictor for the location of

the line. Even With simple hardware structures (storage

overheads of less than 1 KB per core), our LLP predicts

the physical location of a line with 90% accuracy.

CAMEO does not require any software support or TLB

changes for data migration and line tracking. Thus, CAMEO

avoids the reliance on software vendors to deploy a memory

system containing stacked DRAM.
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Figure 2. Performance evaluation of a system, where stacked DRAM is one quarter of total DRAM capacity, implemented as hardware

cache, or Two-Level Memory (with and without page migration), or an idealistic “DoubleUse” system that uses stacked DRAM as a

hardware cache and increases memory capacity by the size equivalent to the stacked memory.

We evaluate our system with 4GB stacked memory and

12GB of off-chip memory. Using stacked DRAM as cache

improves performance by 50%, using stacked DRAM as

main memory improves performance by 33%. CAMEO

outperforms both designs by improving performance by

78%. We show that the performance of CAMEO is within

4% of an idealized system (termed DoubleUse) that uses

the 4GB stacked DRAM as a cache and also increases the

memory capacity by an additional 4GB.

II. BACKGROUND AND MOTIVATION

Recently the research community has started investigating

different emerging technologies to integrate with DRAM for

future memory systems. One such technology is stacked

DRAM, which provides roughly half the latency of tradi-

tional DRAM at about 8x higher bandwidth [2, 10, 6, 11].

Unfortunately, the size of stacked DRAM modules might

not be large enough to replace off-chip memory, although

the capacity of stacked DRAM may be as much as quarter

of overall capacity of DRAM in the system [5, 7], as

shown in Figure 3. Hence, it is likely that stacked DRAM

and commodity DRAM will co-exist in future systems,

and existing proposals use the stacked DRAM as either a

hardware managed cache or as part of main memory.
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A. Using Stacked DRAM as Cache

Using stacked-DRAM as a cache has the advantage that

it can be deployed without relying on OS support. Such

a cache is used as an intermediate cache between the last

level cache (LLC) of the processor and main memory.

The key challenges in architecting DRAM caches include

designing a low-overhead low-latency tag store, and avoiding

the serial lookup latency for accessing memory. Recent

work [10, 18, 11, 12, 8] has addressed these challenges by

integrating tag store within the DRAM array and using cache

hit predictors [11, 12] to avoid tag look-up serialization

latency. In this work, we will evaluate the performance

impact of using stacked DRAM as hardware cache using the

state-of-the-art Alloy Cache [11]. Alloy Cache optimizes the

cache structure for overall system performance by minimiz-

ing hit latency with a direct-mapped cache and co-locating

the tag store entry with the data line.

Figure 2 shows the performance improvement of ar-

chitecting stacked memory, which is one quarter of total

DRAM capacity, as a DRAM cache for our baseline system

(experimental methodology is in Section III). We classify the

workloads into two categories: Capacity-Limited (memory

footprint more than off-chip memory) and Latency-Limited

(memory footprint fits in off-chip memory). Overall, using

stacked DRAM as a hardware cache provides 50% im-

provement. However, for Capacity-Limited workloads the

improvement is marginal, because using stacked memory as

a cache makes it invisible to the OS.

B. Using Stacked DRAM as Two Level Memory

Using stacked DRAM as part of memory address space

has the advantage of providing an effective capacity that is

the sum of both stacked DRAM and commodity DRAM. We

refer to such a system as Two Level Memory (TLM). With

TLM, the stacked memory space is made visible to the OS,

thereby increasing the total memory capacity of the system.

This allows the system to accommodate a larger number of

pages and reduce the number of page faults, thus reducing

the slowdown that happens due to accesses to storage.

The advantage of TLM is that it avoids the tag store

overhead of a cache, as it leverages the existing paging

mechanism to decide the physical location of the page. A

simple way to deploy TLM is to statically partition the

address space into low-latency region (stacked DRAM) and

high-latency region (off-chip memory). Thus, TLM services



memory requests with either low-latency or high-latency

depending on the physical location of the page address.

A straight-forward implementation of TLM is oblivious

to the latency characteristics of different memories and ran-

domly maps the pages across the memory address space. We

refer to this as TLM-Static. Figure 2 shows the performance

of architecting stacked memory as TLM-Static. As the total

memory capacity visible to the OS gets increased, the

Capacity-Limited workloads see significant benefits (67%

on average). However, when workloads are not limited by

memory capacity, the benefits are much reduced compared to

hardware cache (18% vs.82%). This is because, cache retains

the data lines with high locality in the stacked memory,

whereas TLM-Static does not optimize for data locality.

C. Problem of Coarse-Granularity Migration

The Operating System can optimize TLM for data locality

by migrating pages with high locality from off-chip memory

to stacked memory. We refer to this configuration as TLM-

Dynamic. TLM-Dynamic retains recently accessed pages in

stacked memory. It does so by swapping a page that gets

accessed in off-chip memory with a victim page in stacked

memory. Unfortunately, such data migration must occur at a

page granularity (4KB in our study). The cost of migrating

data at page granularity is significantly high, as it entails a

swap operation of 4KB between stacked memory and off-

chip memory. Both memory modules must read and write

the respective 4KB pages (a total memory activity of 16KB).

When a significant fraction of lines are not referenced, such

page granularity transfers become highly inefficient in terms

of memory bandwidth.

Figure 2 shows the performance of architecting 4GB

stacked memory as TLM-Dynamic. For Latency-Limited

workloads, TLM-Dynamic has some performance degrada-

tion compared to Cache. However, for Capacity-Limited

workloads, the overhead of data migration far outweighs

the potential benefits. Overall, TLM-Dynamic has better

performance than TLM-Static (50% versus 33%). Although

data migration can optimize for locality, doing so at large

granularity may limit the performance.2

D. Goal: Optimizing for Both Capacity and Locality

Ideally, we want an architecture that does not rely on OS

support, provides full memory capacity, and still optimizes

data locality at a fine granularity. To illustrate the perfor-

mance of such a design, we evaluate an “idealistic” con-

figuration, called DoubleUse, which not only uses stacked

memory as a hardware cache but also increases the capacity

of off-chip memory by the size of stacked memory. In

2Prior work [18] on using OS-based page remapping of frequently
accessed pages from off-chip DRAM to stacked-DRAM had similar conclu-
sions that when the overheads are modeled, the performance improvement
of page migration reduces significantly. We analyze different page migration
policies for TLM in Section VI-D.

essence, this is a theoretical configuration to show the po-

tential improvement possible with having increased memory

capacity and performing fine-grained data migration.

Figure 2 shows the performance of the DoubleUse sys-

tem. For Latency-Limited workloads, DoubleUse performs

similar to hardware cache, as these workloads do not need

higher memory capacity. However, for Capacity-Limited

workloads DoubleUse performs significantly better than

hardware cache, and marginally better than TLM.3 Overall,

the DoubleUse system has a performance of 82%, whereas

optimizing the system only for capacity (TLM-Static) pro-

vides 33%, optimizing for both capacity and locality at page

granularity (TLM-Dynamic) provides 50%, and hardware

cache provides 50%. The goal of our paper is to develop

an organization that has cache-like properties of managing

data at fine granularity, while still providing full memory

capacity, and without relying on OS support. We discuss our

experimental methodology before describing our solution.

III. EXPERIMENTAL METHODOLOGY

A. System Configuration

We use a Pin-based [22] x86 simulator with a detailed

memory system model. Table I shows the configuration

used in our study. The parameters for the L3 cache, and

DRAM (both off-chip and stacked) are similar to the recent

studies on stacked DRAM [10, 11]. For architecting stacked

DRAM as a hardware cache, we use the Alloy Cache [11].

We consider a system where stacked DRAM accounts for

25% of the total DRAM capacity, hence we use 12GB off-

chip memory provisioned with 4GB of stacked DRAM. We

model a virtual to physical translation. The victim page is

selected using a clock algorithm (if an invalid page is not

found after probing five random locations). Page faults in

our system are assumed to be serviced by a solid-state disk

with a latency of 32 microsecond (105 cycles).

B. Workloads

We use a representative slice of 20-billion instructions

from SPECCPU 2006 suite. The evaluation is performed

by executing benchmarks in rate mode, where all cores

execute the same benchmark. Given that our study is about

the memory system, workloads that spend a negligible

amount of time in memory are not meaningful for our

studies. To capture the memory system activity for different

applications, we classify the benchmarks based on memory

working set and Miss Per Thousand Instructions (MPKI) in

L3 cache. As our baseline system has 12GB memory, we

label benchmarks that have a working-set size larger than

3For libquantum, TLM-Dynamic performs better than DoubleUse. This
happens because the stacked DRAM in DoubleUse is a direct-mapped cache
and suffers from conflict misses, even if the working set would have fit in
the stacked DRAM. With TLM-Dynamic, the OS based page allocation
eventually moves all pages into stacked DRAM, hence TLM-Dynamic
outperforms Double Use. However, on average, DoubleUse significantly
outperforms TLM-Dynamic.



Table I
BASELINE SYSTEM CONFIGURATION

Processors

Number of Cores 32
Frequency 3.2GHz

Core Width 2 wide out-of-order

Last Level Cache

Shared L3 Cache 32MB, 16-way, 24 cycles

Stacked DRAM

Bus Frequency 1.6GHz (DDR 3.2GHz)
Channels 16

Banks 16 Banks per rank
Bus Width 128 bits per channel

tCAS-tRCD-tRP-tRAS 9-9-9-36 bus cycles

Off-Chip DRAM

Bus Frequency 800MHz (DDR 1.6GHz)
Channels 8

Banks 8 Banks per rank
Bus Width 64 bits per channel

tCAS-tRCD-tRP-tRAS 9-9-9-36 bus cycles

SSD Storage

Page Fault Latency 32 micro seconds (100K cycles)

12GB as Capacity-Limited. For the remaining benchmarks

(working set less than 12GB), we sort them based on

Misses Per Thousand Instructions (MPKI), and group the

benchmarks with MPKI greater than 1 as Latency-Limited.4

Table II shows the L3 MPKI and memory footprint for

the workloads used in our study. The virtual-to-physical

mapping ensures that multiple benchmarks do not map to

the same physical address.

Table II
WORKLOAD CHARACTERISTICS (32-COPIES IN RATE MODE)

Limited By Name L3 MPKI Memory Footprint

Capacity

mcf 39.1 52.4GB
lbm 28.9 12.8GB

GemsFDTD 19.1 25.2GB
bwaves 6.3 27.2GB

cactusADM 4.9 12.8GB
zeusmp 5.0 14.1GB

Latency

gcc 63.1 2.8GB
milc 31.9 11.2GB

soplex 28.9 7.6GB
libquantum 25.4 1.0GB
xalancbmk 23.7 4.4GB
omnetpp 20.5 4.8GB
leslie3d 15.8 2.4GB
sphinx3 13.5 0.60GB
bzip2 3.48 1.1GB
dealII 2.33 0.88GB
astar 1.81 0.12GB

C. Figure of Merit

We measure the execution time when all benchmarks in

the workload finish execution (as benchmarks are run in rate

mode the variation in completion time of different bench-

marks within a workload is negligible). We report speedup

of a given configuration as the ratio of the execution time

of the baseline (with no stacked DRAM) to the execution

time of that configuration.

4Due to space limitations, we do not show detailed results for the
remaining SPEC benchmarks (working set < 12GB and MPKI < 1). For
these workloads, cache, TLM, and CAMEO all have similar performance.

IV. CAMEO: ARCHITECTURE AND DESIGN

By integrating stacked DRAM with commodity-DRAM,

we would like to provide a high-capacity and low-latency

memory system. A Two Level Memory optimizes the first

objective of high capacity, and a cache achieves the sec-

ond objective using fine-grained organization and hardware

management. To achieve both objectives simultaneously, we

propose CAche-like MEmory Organization (CAMEO).

A. Overview of CAMEO

Figure 4 provides an overview of CAMEO. In the exam-

ple, the stacked memory has capacity of N lines, and the

off-chip memory has capacity of 3N lines. Thus, combining

stacked DRAM and off-chip memory would provide a

visible address space of 4N lines. For simplicity, let us

assume that the memory space starts from stacked memory

and grows to the region of off-chip memory. To leverage

locality like hardware cache, CAMEO keeps the recently

accessed data line in stacked memory by swapping data lines

between the two memory regions. We call the group of lines

that can be mapped to a given location in stacked DRAM

as a Congruence Group. For example, lines A, B, C, and D

form a Congruence Group. We restrict that lines can only

be swapped with another line from the same Congruence

Group. This is similar to the group of lines contending for

the same set in a hardware cache (to accommodate one

line we evict another line from the same set). The number

of Congruence Groups is equal to the number of lines in

stacked memory. If there are N lines in stacked memory,

then the bottom log2(N) bits of the requested line address

identifies the Congruence Group of the line.

N

2N−1

0

Off−chip MemoryStacked Memory

CONGRUENCE

GROUP

2N 3N

4N−1N−1 3N−1

CA B D

Figure 4. Lines A, B, C and D form a Congruence Group. CAMEO

performs swapping only within the Congruence Group.

When a line in off-chip memory is accessed, say Line B,

CAMEO would evict Line A from stacked memory and store

Line B in the location of Line A. CAMEO would then store

Line A in the off-chip memory where Line B was initially

stored. Swapping maximizes effective capacity by ensuring

that there is only one copy of the line in main memory.

Line Swapping: The swapping operation is performed

in hardware using existing writeback and fill queues. As

CAMEO operates on line granularity, a swapping operation

is done as a writeback from stacked DRAM to main memory,

and a demand read from main memory to stacked DRAM.



B. Line Location Table

CAMEO performs the swapping operation in hardware

in a manner transparent to the Operating System. Such

swapping causes a given line to relocate to another position

within the Congruence Group. To correctly identify the

position of a requested line, CAMEO must track the physical

position of all data lines. The hardware structure that keeps

track of this information is called the Line Location Table

(LLT). For each Congruence Group, the LLT keeps a record

of the physical location of all the lines. We call the address

requested by the LLC of the processor as the Requested

Address and the real address where such line is located as

Physical Address. As LLT is kept at the granularity of a

Congruence Group, each LLT entry provides a mapping of

all the lines in the Congruence Group. For example, for our

configuration with 4GB stacked memory and 12GB off-chip

memory, we would have four lines in the Congruence Group,

and each entry in the LLT will be a four-entry tuple with

two bits of location for each of the four lines.

C D

A B C D

Request B

B C
BA B

B A

C D

C D

Request D

Line Location Table Stacked Memory

Physical Addr 

Request Addr

D
BA B C D

D A C B

Request Addr

Physical Addr 

Request Addr

Physical Addr 

B C D

A D

A C B

A

Off−Chip Memory

BA B

Figure 5. Operation of the Line Location Table (LLT), which keeps

location information for each Congruence Group. Lines A, B, C,

and D form a Congruence group, and operation of LLT is shown

after two memory requests are performed.

Figure 5 illustrates the operation of LLT with an example.

Lines A, B, C, and D belong to the same Congruence Group.

Initially, the LLT entry contains an identity mapping where

the physical addresses of the lines are identical to the real

location. When a request to Line B is made, CAMEO would

swap Line A and B, and record the new mapping in the LLT.

When a subsequent request is made to say Line D, then

CAMEO would swap Line B (which is in stacked memory)

with Line D, and update the LLT entry accordingly. Thus, a

line can move to any location within the Congruence Group

(for example, Line B got moved within off-chip memory to

the location of Line D). CAMEO uses the LLT much like

the “tag-store” in a traditional cache to identify which line is

resident in the stacked memory. However, unlike hardware

cache, CAMEO also uses the LLT information to identify

the real location of the line in the off-chip memory in case

the line is not found in the stacked memory.

C. Design Challenges for the Line Location Table

To access a line with CAMEO, the request must first

access the LLT to determine the physical location of the

line. Only then can the memory controller decide whether

the line should be obtained from the stacked memory or

off-chip memory. To keep CAMEO practical, it is important

that the storage and latency overheads of the LLT are kept

to a minimum. However, this is a challenging task.

For our system with 4GB stacked memory and 12GB

off-chip memory, each Congruence Group will have four

lines. Thus, each LLT entry will be one byte (4 entries of 2

bits each). For a 16GB system, there would be 64 Million

Congruence Groups (16GB divided by 256B, the size of the

Congruence Group). Thus, the total size of the LLT for our

system will be 64 MB. We discuss the design trade-offs and

challenges in architecting an LLT of such a large size.

Addr

Data

Main Memory

Stacked Offchip

(a) (b)

LLT

Addr

Data

Main Memory

Stacked Offchip

SRAM

Figure 6. Options for LLT. (a) SRAM-based LLT incurs impractical

storage overhead (b) LLT can be embedded in stacked DRAM but

incurs indirection latency (first access for LLT, second for data).

1) SRAM-Based LLT (Impractical): The size of LLT

(64MB) is greater than the size of the Last Level Cache

(LLC) found in current microprocessors. Therefore, design-

ing a LLT made of SRAM would incur unacceptably high

overhead (in essence, sacrificing the L3 cache for storing

LLT). Furthermore, accessing the LLT would still incur a

latency overhead of as high as the L3 cache (24 cycles).

Figure 6(a) shows the design of SRAM-based LLT. The

requested line address probes the LLT, to identify the real

location of the line, and access the main memory with

this line address to obtain data. As this design incurs

impractically high storage overhead, this design is only of

theoretical importance and we do not consider it any further.

2) Embed LLT in Stacked DRAM (Practical but Slow):

A more practical approach to design the LLT is to avoid the

SRAM overheads by storing the LLT in the stacked DRAM.

Figure 6(b) shows such a design that embeds the LLT in

stacked DRAM. A portion of stacked DRAM is reserved to

serve as the LLT. An incoming line address first indexes the

LLT to obtain the LLT entry. Based on the real location of

the line, then the second access is performed for obtaining

data, either from the stacked DRAM or off-chip DRAM.

This approach, which we call Embedded-LLT, sacrifices

some capacity of stacked memory for storing LLT, and

makes this capacity invisible to the memory address space.

Fortunately, the size of the LLT (64MB) is much smaller

than the size of the stacked DRAM (4GB). We assume that

the first 64MB of 4096 MB stacked memory is reserved for
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Figure 7. Organization of Co-Located LLT. The Location Table Entry (LTE) is co located with the data line to form a Location Entry

and Data (LEAD) of 66 bytes. The 2KB row buffer stores 31 LEAD. Each access to stacked DRAM provides one LEAD.

the LLT, and the remaining 4032 MB is available to serve

as main memory. Thus, with Embedded-LLT, 98.5% of the

stacked memory is still available to serve as main memory.

Unfortunately, Embedded-LLT introduces the indirection

latency of looking up the LLT before accessing data. This

means, each request gets broken down into two requests, first

to lookup the LLT (in stacked DRAM) and second to obtain

data (either from stacked DRAM or off-chip DRAM). This

latency overhead increases the effective latency of memory

accesses and degrades performance.

D. Practical LLT by Co-location with Data Line

We expect that in the common case, the memory requests

will be serviced by stacked memory. Therefore, if we can

remove the serialization latency of LLT lookup for the

lines that are resident in the stacked DRAM, then we can

expect significant latency improvement over Embedded-LLT.

We propose a design, called Co-Located LLT, which co-

locates the LLT Entry with the data line. Each data line is

appended with a Location Table Entry, to form an entity

called Location Entry and Data (LEAD). When the stacked

DRAM is accessed, we get one LEAD. If the Location

Table Entry in the LEAD identifies that the requested line is

present in the stacked DRAM, we can directly use the data

from the LEAD, without any extra access to the stacked

DRAM. If the LEAD identifies that the line is in the off-

chip memory, then a second access for desired location in

off-chip memory is performed. Thus, Co-Located LLT can

avoid the LLT lookup serialization for lines that are resident

in the stacked memory.

The row buffer of the stacked DRAM used in our study

is 2KB. Ideally, we would be able to accommodate 32 data

lines (of 64 bytes each) in this row buffer. However, to

implement Co-Located LLT, we must provision space at

the granularity of a LEAD. We sacrifice memory space of

one data line in the row buffer, and use it to support the

Location Table Entry for the other 31 lines. Thus, each

LEAD can have up to two bytes of Location Table Entry

(we use one byte and keep one byte reserved for future use).

The size of one LEAD is thus, 2+64=66 Bytes. The size of

the data bus for the stacked DRAM used in our studies is

16 bytes, so we set a burst length of five, and obtain 80

bytes. We use the 66 bytes of LEAD and ignore the extra

14 bytes. Figure 7 shows the design of the Co-Located LLT

for a given row buffer in stacked memory. The 2KB row

buffer can accommodate 31 units of LEAD, resulting in

a useful capacity of 31/32 (97%). For simplicity, we keep

the assumption that the first 32MB in memory space in not

visible to the operating system. Before accessing the stacked

memory, we modify the physical address appropriately.5

E. Latency Comparisons of LLT Designs

An ideal design of LLT, termed Ideal-LLT, would incur

zero overheads for LLT storage and latency. As soon as

the memory controller receives the requested line address, it

would know the real location of the line and would access

the data from that location. Figure 8 compares the latency

of Embedded-LLT and Co-Located LLT to Ideal-LLT. We

assume that an access to stacked memory incurs 1 unit of

latency and an access to off-chip memory incurs two units.

Ideal−LLT
(H)

1 2 3

LLT

LLT

LLT

Data

LLT+Data

LLT

Co−Located
LLT

saved

saved

Embedded

time

(M)

(H)

(H)

(M)

Stacked 

Off−chip (M)

LEGEND

0

Baseline

Figure 8. Access Latency Comparison for different LLT designs,

for a system with stacked DRAM latency of 1 unit and off-chip

DRAM latency of 2 units.

The analysis considers a single memory request serviced

in isolation. For the baseline, the request is serviced by off-

chip memory and would incur a latency of 2 units. With an

Ideal-LLT, if the line is in stacked DRAM (case denoted as

H), it will be serviced with a latency of one unit. However if

the line is in off-chip memory (case denoted as M), it would

be serviced with a latency of two units. For the Embedded-

LLT, the LLT lookup takes one unit of time. Therefore, if the

data line is in stacked DRAM, it would be serviced in two

units (case H), and if the data is in off-chip memory, it would

take 3 units (case M). Thus, Embedded-LLT has no latency

5For a given LineAddr X in stacked memory, the revised location of
stacked memory is obtained using [(X + X/31)-LinesIn32MB]. Note, as we
are dividing by a constant, the division operation can simply be performed
with a few adders using residue arithmetic (31=32-1). This operation can
be performed in parallel with the L3 access to hide the latency.



advantages for accessing data from stacked DRAM (albeit

there may still be bandwidth benefits), and a slowdown for

off-chip accesses. For the Co-Located LLT, if the data line

is in stacked DRAM, it would be serviced in 1 unit (LLT

access and data access happens in one transfer). If the data is

in off-chip memory, then the lookup latency of LLT becomes

serialized, and the total latency would be 3 units. Thus, Co-

Located LLT has lower latency for data lines in the stacked

DRAM. However, it has higher latency for off-chip accesses.

F. Performance Comparisons of LLT Designs

Figure 9 compares the speedup of CAMEO with Ideal-

LLT, Embedded-LLT, and Co-Located LLT. As CAMEO

provides a high memory capacity, there are benefits for

capacity intensive workloads for almost all CAMEO config-

urations. As Embedded-LLT has high latency overheads, it

results in performance slowdown for latency-sensitive work-

loads. Co-Located LLT, on the other hand, has lower latency

when data lines are resident in stacked DRAM, hence the

performance improvement is significant (on average 74%).

However, there is still a significant performance gap between

Co-Located LLT and Ideal-LLT (on average, 74% versus

80%). This is mainly because of the slowdown of off-chip

accesses due to the LLT lookup. The next section describes

solutions to avoid the serialization of LLT lookup.
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Figure 9. Speedup of different LLT designs. Embedded-LLT has

high latency overheads, hence the slowdowns. Co-Located LLT has

low latency for data lines in stacked DRAM, however because of

higher off-chip latency the performance is lower than Ideal-LLT.

V. MEMORY LOCATION PREDICTION

The Co-Located LLT avoids the latency of LLT lookup

for lines resident in the stacked DRAM by fetching the LLT

entry and data together. However, it still suffers from the

latency of LLT lookup for lines that are resident in the

off-chip memory. We propose a prediction mechanism that

avoids the LLT serialization latency for the off-chip accesses.

We first describe the framework for how such a predictor can

be integrated in CAMEO, then the design of the predictor,

followed by performance evaluation.

A. Avoiding LLT Latency with Location Prediction

Figure 10(a) shows the memory access with CAMEO. The

off-chip access is serialized and happens only after accessing

the stacked memory. We call such a model of memory

access as Serial Access Memory (SAM). Alternatively, we

can predict the location of the line using a Line Location

Predictor (LLP). The organization of CAMEO with LLP is

shown in Figure 10(b). If the LLP predicts that the location

of the line is in off-chip memory, we can access both the

stacked memory and off-chip memory in parallel. Only the

predicted location in off-chip memory is accessed. If the line

is found in stacked DRAM, then the prediction is ignored.

However, if the line is not found in stacked DRAM, then

the location provided by the LLP is verified with the LLT

entry obtained from the stacked DRAM. If the prediction is

correct, the line from off-chip location is used. Given that

the off-chip access was made in parallel with stacked DRAM

access, this scheme avoids the latency of LLT lookup.

Off−Chip
Memory

Stacked
MemoryCPUs

Memory
Stacked

Memory
Off−Chip

(a)

CPUs Off−chip?
(b)

LLP

Figure 10. Avoiding LLT latency with prediction. (a) With SAM,

off-chip access happens only after stacked-DRAM access (b) If

access is predicted to be off-chip, the predicted location is accessed

in parallel.

B. Line Location Predictor

If the LLP is accurate, we can avoid the serialization of

LLT lookup for off-chip accesses in the common case. The

main challenge for designing an effective LLP is that the

LLP must decide upon the correct location from multiple

candidate locations. This is unlike previous schemes on

cache hit prediction [11, 12] that makes a binary decision

between cache and memory. In our configuration, the line

could be in any of the four locations, say 00, 01, 10, or

11, with location 00 being in stacked memory, and other

three locations being in off-chip memory. Thus, the LLP

must make a prediction out of four choices, as shown in

Figure 11(a).

LastTime

Pred

"00"=stacked memory 

(a) (b)

01?

11?

00?

10?

10

00
01

00
Predictor

Line
Location

Addr
PC

Figure 11. Line Location Predictor (a) LLP must make a 4-

ary choice (b) A PC-based LLT implementation that predicts the

location based on last-time.



To keep our predictor design simple, we exploit history

in memory reference stream, as memory references are

known to show good correlation with past behavior [23]. In

particular, we make use of Last Time Prediction. We predict

that the location table entry will provide the same location

it provided the last time. A simple implementation of such

a history-based last time predictor would be to keep a two-

bit register called Line Location Register (LLR), to track the

physical address of the recent L3 miss. On the next L3 miss,

if the location in LLR is in stacked memory (location 00),

then serial access is used. Otherwise, the location provided

by LLR is used to identify the off-chip location within the

Congruence Group.

We can further enhance our predictor based on the ob-

servation that the memory reference stream tends to be

heavily correlated with the instruction address that causes

the memory access [24, 25] . Instead of a single LLR,

we employ a table of LLRs, indexed by the instruction

address of the L3 misses causing instruction. Our evaluation

shows that using a 256-entry (8-bit index) table is quite

effective at bridging the performance gap between serial

access and perfect prediction. As each LLR is 2-bits, a table

of LLR with 256 entries, would require 64 bytes. We employ

a predictor on a per-core basis, so eight such prediction

tables are employed, incurring a total storage overhead of

512 bytes. Thus, the Line Location Predictor in our design

requires negligible overheads.
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Figure 12. Speedup for no prediction, location prediction, and

perfect prediction. On average, no prediction provides 68%, LLP

provides 89%, and perfect prediction provides 94%.

C. Performance Results of LLP

Figure 12 shows the speedup for CAMEO using Co-

Located LLT, with and without the LLP predictor. We also

compare the performance with a prefect predictor that has

100% accuracy. On average, the performance improvement

with SAM is 74%, and with perfect predictor is 80%. Our

proposed Line Location Predictor provides an average per-

formance of 78%, coming within 2% of a perfect predictor.

Thus, even though our proposed implementation is simple

and low overhead, it is still highly effective at obtaining most

of the potential performance from location prediction.

D. Prediction Accuracy Analysis

For assessing the accuracy of LLP, we first describe five

possible cases that can occur: 1) The physical location is

in stacked memory, and the predictor predicts it as such. 2)

The physical location is in stacked memory, but the predicted

location is in off-chip memory. 3) The physical location is in

off-chip memory, but the predictor gives a location in stacked

memory. 4) The physical location is in off-chip memory, and

the predicted location is correct and in off-chip memory.

5) The physical location is in off-chip memory, and the

predicted location is not correct but still in off-chip memory.

LLP makes accurate prediction in case 1 and 4, while case

2, 3, 5 are deemed as mis-prediction. Although case 2, 3,

and 5 are mispredicted, they have different consequence in

terms of latency and bandwidth. Case 2 wastes off-chip

memory bandwidth, case 3 increases access latency, and

case 5 is a combination of bandwidth waste and latency

increase. Table III shows the percentage of each scenario

for no prediction (serial access), prediction using LLP, and

perfect predictor.

Table III
ACCURACY OF LINE LOCATION PREDICTOR

Serviced by Prediction SAM LLP Perfect

Stacked
Stacked 70.3 68.4 70.3
Off-chip 0 1.8 0

Off-chip
Stacked 29.7 1.7 0

Off-chip (OK) 0 23.3 29.7
Off-chip (Wrong) 0 4.8 0

Overall Accuracy 70.3 91.7 100

SAM has 70.3% accuracy, which means higher latency

for 29.7% accesses. LLP has an accuracy of 92%. For 7%

of the accesses LLP causes useless memory access (case 2

and 5), and for 7% of the accesses it causes high latency

(case 3 and case 5). However, for the 92% requests LLP is

accurate, and provides both low latency and avoids wasteful

bandwidth from parallel access. For the rest of the paper,

we will assume CAMEO is implemented with LLP.

VI. RESULTS AND ANALYSIS

A. Speedup Comparisons

Figure 13 shows the speedup from using 4GB stacked

memory as either a hardware-managed cache, or Two Level

Memory (Static and Dynamic), or CAMEO (with Co-

Located LLT + LLP). We also compare these designs with

an idealistic configuration (DoubleUse) that uses the 4GB

as a hardware-managed cache, but also increases the size

of main memory by an additional 4GB. We show the

average speedup (Gmean) separately for Capacity-Limited

workloads and Latency-Limited workloads. The right-most

bar marked Gmean ALL is the geometric mean for all

workloads. On average, Cache provides an improvement of

50%, TLM-Static provides 33%, TLM-Dynamic provides

50%, CAMEO provides 78%, and DoubleUse provides 82%.
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Figure 13. Speedup with stacked memory. CAMEO outperforms both cache and Two Level Memory. CAMEO is close to an idealistic

“DoubleUse” design that uses 4GB stacked memory as cache and also increases memory capacity by 4GB.

For Capacity-Limited workloads, CAMEO improves per-

formance by 74%., Cache, on the other hand, improves

performance by only 5% because it does not use stacked

memory for increasing memory capacity. The performance

improvement for Capacity-Limited workloads comes mainly

from the increase of memory capacity resulting in fewer

page faults. When working set is large, the bandwidth

congestion from page migration causes TLM-Dynamic to

significantly under-perform TLM-Static.

For Latency-Limited workloads, CAMEO improves per-

formance by 80%, similar to DoubleUse (84%). However,

TLM-Static provides only a marginal improvement (18%),

as only one-quarter of the requests are serviced by stacked

memory. TLM-Dynamic provides 50% on average. For

benchmarks that have poor spatial locality (on average, only

10 out of 64 lines in a page get used), such as milc, TLM-

Dynamic causes severe slowdown.

In summary, CAMEO provides both memory capacity of

TLM, and fine-grained management of cache and hence is

able to outperform both designs. On average, the perfor-

mance of CAMEO is very close to the performance of the

idealistic DoubleUse configuration that not only uses the

4GB stacked memory both as hardware cache, and also

provides an extra 4GB for memory capacity.

B. Bandwidth Usage in Memory and Storage

Our system contains three modules: stacked DRAM, off-

chip DRAM, and storage. An ideal design would reduce

the bandwidth consumption of all these three modules si-

multaneously. However, each of the three designs: Cache,

TLM, and CAMEO, optimize the bandwidth of different

modules. To measure bandwidth consumption of different

designs, we calculate the number of bytes transferred on the

bus in respective systems and normalize it to the number in

the baseline. Table IV shows the bandwidth usage of stacked

memory, off-chip memory, and storage, for different designs,

averaged over the workload category.

Cache reduces off-chip bandwidth by 45%, However,

Cache does not reduce storage bandwidth. The reason why

Cache (and CAMEO) have higher stacked memory band-

width usage than the baseline is from installs of data lines.

Table IV
BANDWIDTH USAGE IN MEMORY AND STORAGE (CALCULATED

AS BYTES TRANSFERRED, AND NORMALIZED TO BASELINE).

Capacity-Limited Latency-Limited
Stacked Off-chip Storage Stacked Off-chip

Baseline n/a 1x 1x n/a 1x

Cache 1.93x 0.55x 1x 1.76x 0.29x

TLM-Stat 0.26x 0.74x 0.78x 0.25x 0.75x

TLM-Dyn 2.54x 2.19x 0.78x 1.95x 1.10x

CAMEO 1.89x 1.07x 0.79x 1.51x 0.47x

Both TLM-Static and TLM-Dynamic reduce the band-

width of storage. TLM-Dynamic consumes significant

amount of bandwidth for both off-chip and stacked DRAM

due to page migration. Thus, TLM-Dynamic optimizes stor-

age bandwidth at the expense of memory bandwidth.

CAMEO performs a fine granularity transfer between off-

chip and DRAM which helps limit the memory bandwidth

consumption significantly compared to TLM-Dynamic. The

stacked DRAM bandwidth consumption of CAMEO is sim-

ilar to Cache. However, CAMEO does not provide as much

savings as Cache for off-chip bandwidth as it needs to install

lines evicted from the stacked to off-chip DRAM. However,

unlike Cache, CAMEO does provide a storage bandwidth

reduction of 21% for Capacity-Limited workloads.

C. Energy Analysis

We analyze the power consumption and the Energy-Delay

Product (EDP) for different designs. The power estimation

for DDR3 and storage is derived from [26, 27, 28], and

the stacked memory power is estimated based on [29]. For

Capacity-Limited workloads, we assume that the processor

consumes 60% of the power and the rest is split equally

between the storage and memory. For Latency-Limited

workloads, we assume processor consumes 70% of the

power and memory consumes 30%. Figure 14 shows the

normalized power consumption and energy-delay product

(EDP) for various designs.

The power consumption increases for all the configura-

tions because of the addition of stacked memory. Overall,

Cache increases power by 14%, whereas CAMEO by 37%.



TLM-Dynamic increases power consumption by 51%, as

page migration consumes significant power. Cache decreases

EDP for Capacity-Limited workloads, because it provides

little performance improvement with the addition of stacked

memory power. Overall, Cache improves EDP by 4%, and

TLM-Static improves by 21%, while CAMEO outperforms

all designs by providing 49% EDP improvement.
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the numbers are normalized to the baseline system.

D. Optimizing Placement for Stacked DRAM

Both CAMEO and TLM-Dynamic try to migrate recently

used data from off-chip memory to stacked memory, al-

beit at a different granularity. We can improve the overall

performance of the system by keeping only the frequently

used data in the stacked DRAM. If the OS has oracular

knowledge about page access frequencies, it can place

the frequently used pages in stacked memory, and thus

avoid the overheads of dynamic page migration. We call

this idealistic scheme as TLM-Oracle. Another approach is

to track frequency information on page granularity using

dedicated hardware and have the OS periodically perform

page migration [18] (termed TLM-Freq). Note that TLM-

Freq requires significant support from both hardware and

OS, as memory access frequency is usually not available to

the OS at page granularity.

Figure 15 compares the speedup of CAMEO with dif-

ferent TLM designs. For TLM-Freq, we ignore overheads

due to TLB shootdowns, and the software overheads of

sorting pages based on access frequencies and performing

migration (the bandwidth for page transfer is modeled).

For Capacity-Limited workloads, performing migration at

page granularity hurts performance. However, for Latency-

Limited workloads, with small capacity (<4 GB), the page-

based scheme ensures all the frequently accessed pages get

accommodated in stacked DRAM. The conflict misses for

CAMEO results in performance gap compared to TLM-Freq.

On average, CAMEO provides 78% performance and

TLM-Freq provides 61%. Thus, CAMEO outperforms TLM-

Freq without the need for page access frequency informa-

tion, and software support for sorting and page migration.

Nonetheless, the two optimizations are orthogonal and can
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Figure 15. Speedup from optimized page placement in TLM.

CAMEO outperforms frequency-based page placement without

requiring the tracking support.

be combined for further improvement. For example, if page

frequency information is available, CAMEO can retain lines

from only heavily used pages in stacked DRAM.

VII. OTHER RELATED WORK

We use the recently proposed Alloy Cache [11] to im-

plement our caching structure. Several other studies [10,

12, 13, 9, 8] have looked at optimizing DRAM caches.

Unfortunately, hardware caches give up on the ability of

stacked DRAM to contribute towards OS visible memory-

address space.

Optimizing page placement in heterogeneous memories

has also been an active area of research [17, 14, 15, 18].

However, as data migration decisions are done at page

granularity, such schemes are inefficient at using mem-

ory bandwidth. Enhanced page placement policies based

on frequency information incur significant implementation

complexity from both hardware and software. Our proposal

obviates these overheads and still outperforms such schemes.

A recent work from Chatterjee et. al. [30] proposed a

heterogeneous memory system that combines RLDRAM and

LPDRAM. The first word of a line is stored in RLDRAM

and the remaining in LPDRAM. The total capacity of

the memory system in their proposal is still equal to the

size of LPDRAM, with RLDRAM used only for latency

improvement. Furthermore, their design requires significant

changes to the on-chip caches (sub-sector valid bits for

L1 and L2) and ability of memory controller to send two

time-delayed responses back to the core. CAMEO does not

require changes to the on-chip cache or to the response path

from the memory controller to the core.

Cache Only Memory Architecture (COMA) [31, 32] and

Cache-Coherent Non-Uniform Memory Architecture (CC-

NUMA) [33, 34] were proposed to do efficient data mi-

gration in a shared-memory computer systems consisting of

multiple nodes employing non-uniform memory access. It

is unclear what such optimizations mean in our context of

a single node system with uniform memory access (albeit

with two levels of main memory). RAMPage [35] proposed

to use SRAM as part of the memory and expose the SRAM

capacity to software. However, RAMPage is similar to TLM-

Dynamic in that it transfers data at page granularity and

requires software support for handling data migration.



VIII. SUMMARY

When the size of stacked DRAM is a significant fraction

of the total memory capacity, we want the stacked DRAM

to account for OS-visible memory address space, and still

retain the fine-granularity and OS-transparent data migration

of caches. This paper makes the following contributions:

1) We propose a Cache-like Memory Organization

(CAMEO) that obtains the best of both worlds: main

memory and cache. CAMEO exposes the capacity of

stacked DRAM to the OS so that it can count towards

memory address space. CAMEO also performs line-

granularity data migration transparently, in a manner

similar to hardware caches.

2) CAMEO relies on swapping of recently used data lines

from off-chip memory to stacked memory. We propose

a simple and practical Line Location Table (LLT) for

CAMEO to track the physical location of all data lines.

3) For data lines resident in the off-chip memory, the

performance of CAMEO can be improved by re-

moving the serialization latency due to LLT lookup.

We propose a low-latency (single-cycle), low-storage

overhead (512 bytes), highly accurate (90%) hardware

based Line Location Predictor (LLP) to predict the

physical location of a line.

Our evaluations show that CAMEO provides an average

performance improvement of 78%, outperforming alternative

design points of hardware cache (50% improvement) and

OS-managed two-level memory (33% improvement). The

performance of CAMEO is very close to an idealized system

that uses 4GB stacked memory both as a hardware cache and

also increases the memory capacity by an additional 4GB.
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