

ABSTRACT

Title of Thesis: In-line Interrupt Handling and Lockup Free TLBs

Degree Candidate: Aamer Jaleel

Degree and Year: Master of Science, 2002

Thesis directed by: Dr. Bruce L. Jacob

Department of Electrical and Computer Engineering

The effects of the general-purpose precise interrupt mecha-

nisms in use for the past few decades have received very little

attention. When modern out-of-order processors handle inter-

rupts precisely, they typically begin by flushing the pipeline to

make the CPU available to execute handler instructions. In

doing so, the CPU ends up flushing many instructions that have

been brought in to the reorder buffer. In particular, these

instructions may have reached a very deep stage in the pipe-

line—representing significant work that is wasted. In addition,

an overhead of several cycles and wastage of energy (per

exception detected) can be expected in re-fetching and re-exe-

cuting the instructions flushed. This thesis concentrates on

improving the performance of precisely handling software

managed translation lookaside buffer (TLB) interrupts, one of

the most frequently occurring interrupts. The thesis presents a

novel method of in-lining the interrupt handler within the reor-

der buffer. Since the first level interrupt-handlers of TLBs are

usually small, they could potentially fit in the reorder buffer

along with the user-level code already there. In doing so, the

instructions that would otherwise be flushed from the pipe need

not be re-fetched and re-executed. Additionally, it allows for

instructions independent of the exceptional instruction to con-

tinue to execute in parallel with the handler code. By in-lining

the TLB interrupt handler this provides lock-up free TLBs.

This thesis proposes the prepend and append schemes of in-

lining the interrupt handler into the available reorder buffer

space. The two schemes are implemented on a processor with a

4-way out-of-order core similar to the Alpha 21264. We com-

pare the overhead and performance impact of handling TLB

interrupts by the traditional scheme, the append in-lined

scheme, and the prepend in-lined scheme. For small, medium,

and large memory footprints, the overhead is quantified by

comparing the number and pipeline state of instructions

flushed, the energy savings, and the performance improve-

ments. We find that, lock-up free TLBs reduce the overhead of

re-fetching and re-executing the instructions by 30-95%,

reduce the energy consumption and execution time by 5-25%,

and also reduce the energy wasted by 30-90%.

IN-LINE INTERRUPT HANDLING AND
LOCK-UP FREE TLBs

by

Aamer Jaleel

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2002

Advisory Committee:
Professor Bruce L. Jacob, Chairman/Advisor
Professor Donald Yeung
Professor Manoj Franklin

© Copyright by
Aamer Jaleel

2002

iii

ACKNOWLEDGEMENTS

I am extremely grateful to my advisor, Dr. Bruce L. Jacob, for giving me

the opportunity to work with him for the past four years. He has provided

me with good advice and perspective over these years in the classroom,

countless hours in his office, and many informal meetings in the hallways

and “other” places.

I would also like to thank my parents for their many sacrifices, love, and

unconditional support all along. I would also like to thank my brothers and

sisters for their patience and support.

I would also like to thank the members of my research community, espe-

cially Brinda, Vinodh, Dave, Paul, Jyoti, Abdel-Hameed, Aneesh, and

Deepak for their support, advice, and suggestions over the past two years.

Special thanks go to Brinda for always encouraging me and assisting me in

solving the different problems I have faced. Another special thanks go to

Jyoti for her advice, assistance, and support in all aspects of this thesis.

Finally, thanks to Allah (swt) for blessing me with a number of opportu-

nities, giving me the strength to reach this point, and for providing me with

great family and friends.

TABLE OF CONTENTS

CHAPTER 1:
THE INTERRUPT PROBLEM..1

1.1 The Problem... 1

1.2 A Novel Solution ... 3

1.3 Results.. 5

CHAPTER 2:
INTERRUPT HANDLING AND REORDER BUFFERS..7

2.1 Interrupts .. 8
2.1.1 Handling Internal Exceptional Situations ... 8

2.1.2 Issues with Interrupt Handling.. 9

2.2 Precise Interrupts ... 12
2.2.1 Implementing Precise Interrupts ... 12

2.2.2 Reorder Buffer (ROB) .. 14

CHAPTER 3:
INTERRUPTS IN MODERN MICROPROCESSORS....16

3.1 Traditional Scheme of Interrupt Handling 16
3.1.1 Problems with the Traditional Scheme of Handling Interrupts 17

3.2 In-line Interrupt Handling - A Novel Solution 18

3.3 In-lining Translation Look Aside Buffer (TLB) Interrupts 21
3.3.1 What are TLB Interrupts? ... 21

3.3.2 Software Managed TLB vs. Hardware Managed TLB....................... 22

3.3.3 Why In-line TLB Interrupts? .. 23

CHAPTER 4:
IN-LINE INTERRUPT HANDLING25

4.1 In-line Interrupt Handling .. 25
4.1.1 Append In-Line Mode .. 26
iii

4.1.2 Prepend In-Line Mode .. 28

4.1.3 Append Scheme Vs. Prepend Scheme.. 30

4.2 Issues With Interrupt In-lining... 31

CHAPTER 5:
PERFORMANCE OF LOCK-UP FREE TLBs39

5.1 Experimental Methodology ... 39
5.1.1 Simulator... 39

5.1.2 Benchmarks .. 41

5.2 Performance of Lock-Up Free TLBs 43

5.3 Energy Savings With Lock-Up Free TLBs.............................. 53

CHAPTER 6:
RELATED WORK...60

CHAPTER 7:
CONCLUSIONS...62

7.1 Conclusions.. 62

7.2 Future Work ... 66

BIBLIOGRAPHY...68
iv

v

LIST OF FIGURES

Fig. 2.1. ---- Reorder Buffer (ROB)... 14

Fig. 3.1. ---- Interrupt Handling (Traditional vs. In-line) 20

Fig. 4.1. ---- Append In-line Scheme... 26

Fig. 4.2. ---- Prepend In-line Scheme. ... 29

Fig. 5.1. ---- Alpha 21264 Simulator Model.. 40

Fig. 5.2. ---- TLB behavior of SPEC 2000 suite (source McCalpin)..... 41

Fig. 5.3. ---- Limitations of Interrupt In-lining 44

Fig. 5.4. ---- Average Number of Instructions Flushed per DTB miss .. 46

Fig. 5.5. ---- Performance of Interrupt In-lining 47

Fig. 5.6. ---- TLB miss rate vs. Performance Improvement (Jacobi, Matrix
Multiply)... 52

Fig. 5.7. ---- TLB miss rate vs. Performance Improvement (Quicksort, Red
Black) ... 53

Fig. 5.8. ---- Location of Instructions Flushed due to a TLB miss 54

Fig. 5.9. ---- Energy Distribution of Application................................... 57

 Chapter 1

THE INTERRUPT PROBLEM

1.1 The Problem

Precise interrupts in modern microprocessors have become both frequent

and expensive and are rapidly becoming even more so. One reason for their

rising frequency is that the general interrupt mechanism, originally

designed to handle the occasional exceptional condition, is now used

increasingly often to support normal (or, at least, relatively frequent) pro-

cessing events such as support for garbage collection, software managed

distributed virtual memory, and profiling [34].

Besides their increasing frequency, interrupts are also becoming highly

expensive; this is because of their implementation. Modern out-of-order

cores typically handle precise interrupts in the same way as a register-file

update: i.e., at commit time. When an exception is detected, the fact is

noted in the processors reorder buffer (ROB) entry. The exception is not

usually handled immediately; rather, the processor waits until the instruc-

tion in question is about to commit before handling the exception—doing

so ensures that exceptions are handled in program order and not specula-

tively. Once the processor determines an exception isn’t speculative, it pro-

ceeds through the following phases:
1

1. The pipeline and ROB are flushed; exceptional PC is saved, and the PC

is set to the appropriate handler.

2. The exception is handled with privileges enabled.

3. Once the interrupt handler has finished execution, the exceptional PC is

restored, and the user program continues execution.

Increasing trends in performance improvement conspire against this

method of exception handling. First, the cost of exception handling is

increasing relative to the performance of microprocessors. The increasing

pipeline depths and growing reorder buffer sizes highlight the enormous

overhead of handling an exception mainly due to the fact that the pipeline

is flushed. With an 80-entry ROB, like the Alpha 21264, this can account

for as many as a whole instruction window being flushed at the time of an

exception. Additionally, an overhead of several cycles can be expected in

re-fetching and re-executing the instructions that were flushed. Even more,

there is additional performance loss because no user instructions execute

while the interrupt handler is being executed. The interrupt handler was

invoked because an instruction that was being retired had an exception, but

other instructions independent of the exceptional instruction could have

continued execution. Along with these sources of performance loss, there

is a significant amount of energy wastage in terms of re-fetching and re-
2

executing the instructions flushed. Given that we have broken the triple

digit Wattage ratings for modern microprocessors, it is imperative that we

improve the traditional method of handling interrupts.

1.2 A Novel Solution

If we look at the different sources of performance loss with the traditional

scheme of handling interrupts (user code stalls during the execution of han-

dler, many instructions are fetched and executed twice), we see that they

are due to the fact that the reorder buffer is flushed at the time the exception

is detected. If we can avoid flushing the reorder buffer, but still allow for

the interrupt handler to be fetched and executed, we could essentially elim-

inate these sources of performance loss. This has been pointed out before,

but the suggested solutions (refer to the related work section of this thesis)

have typically been to save the entire internal state of the pipeline and

restore it upon completion of the interrupt handler.

To begin with, why is the reorder buffer and pipeline flushed? Is it to

ensure privileges and not allow privileged operating system instructions

(interrupt handler) to co-exist with user level instructions already present in

the pipeline? A suggested solution to this problem is to add a privileged bit

to each entry of the reorder buffer, thus instructions fetched in privileged
3

mode have their privileged bits set, and those fetched in user mode don’t

have the privileged bit set [9].

So if a solution to the privilege problem exists, then why do modern

microprocessors still flush the pipeline? Space, processors flush the pipe-

line and reorder buffer to make room for the interrupt handler to be fetched,

executed, and retired. Since user instructions are held up at commit

because of the exceptional instruction, no other instruction would be able

to commit. Additionally, if the interrupt handler requires more space than is

available in the reorder buffer, the machine would encounter a deadlock sit-

uation. However, if their exists enough space for the interrupt handler to fit

into the reorder buffer, and with a few modifications to existing micropro-

cessors, one can avoid flushing the pipeline.

Our solution to the interrupt problem uses existing out-of-order hardware

to handle interrupts both precisely and inexpensively. If at the point the

processor detects an interrupt, it checks to see if there are enough unused

reorder buffer slots. If so, the processor will in-line the interrupt handler

within the reorder buffer and not flush the pipeline. However, if there aren’t

enough reorder buffer slots available, the processor will handle the inter-

rupt by the traditional method—flush the pipeline.

Though such a mechanism is generally applicable to all types of software

managed interrupts that have relatively short interrupt handlers, for the pur-
4

pose of this thesis, we will concentrate on one type of interrupt handler—

that used by a software managed TLB to invoke the first-level TLB-miss

handler. We do this for several reasons:

1. TLB-miss handlers are invoked very frequently (once per 100-1000 user

instructions)

2. The first-level TLB-miss handlers tend to be short (on the order of ten

instructions) [12, 16]

3. These handlers also tend to have deterministic length (i.e., they tend to

be straight-line code—no branches)

In-lining the TLB interrupt handler allows for instructions independent of

the faulting instruction to continue executing. This essentially provides us

with lock-up free TLBs.

1.3 Results

We evaluated two separate lock-up free mechanisms (append and prepend

schemes) on a processor model of an out-of-order core with specs similar

to the Alpha 21264 (4-way out-of-order, 150 physical registers, up to 80

instructions in flight, etc.). No modifications are required of the instruc-

tion-set; this could be implemented on existing systems transparently—i.e.,

without having to rewrite any of the operating system.
5

We model only a lock-up-free data-TLB facility, and have left the lock-

up-free instruction-TLB facility as part of our future work. Lockup free

TLBs reduce the number of instructions flushed by 30-95%, thus signifi-

cantly reducing the amount of time and energy wasted. When applications

generate TLB misses frequently, this reduction in overhead amounts to a

substantial performance savings. We find that lock-up-free TLBs enable a

system to reach the performance of a traditional fully associative TLB with

a lock-up-free TLB of roughly one-fourth the size. We additionally see that

the lock-up-free TLB provides performance and energy savings of 5-25%,

and reduce the amount of energy wasted by 30-90%.
6

 Chapter 2

INTERRUPT HANDLING AND REORDER BUFFERS

Under ideal conditions, a processor would start executing a program and

continue executing it to completion without stopping or encountering any

problems. However, in the real world, processors can encounter several dif-

ferent unpredictable situations that hinder the normal flow of execution.

For example, during the course of execution, if the processor detects an

illegal opcode, a divide by zero, or an overflow occurs, then the processor

should know exactly what to do. It could very well be that the processor

could completely halt the program and work on another. However, there

are some exceptions that should not be suicidal; instead the processor must

overcome the exception. An example of such an exception is the TLB miss

exception, where the processor performs some behind-the-scenes work (fill

the TLB with a virtual to physical address mapping) on behalf of the run-

ning program. Additionally, among the several different devices that a pro-

cessor interacts with, if one of the devices signals the processor, then the

processor will have attend to the device in one way or another. The signals

and situations that arise and prevent a CPU from continuing to execute a

program are called exceptional events, also known as interrupts.
7

In this chapter, we will discuss the different types of interrupts that can

occur during the course of execution. We will discuss how these interrupts

are handled in general, and how they are handled in the case of modern

high performance microprocessors.

2.1 Interrupts

Interrupts can be classified into the internal and external types. Internal

interrupts, “sometimes referred to as traps, result from exceptional condi-

tions detected during the fetching and executing of instructions” [20].

These exceptions can be due to software errors such as illegal opcodes,

divide by zero, or it could very well be that the instruction itself is an inter-

rupt instruction.

External interrupts however are not caused by specific instructions,

instead are caused by sources that are outside the process being executed,

sometimes these sources are completely unrelated to the process [20].

Examples of such interrupts are I/O interrupts, timer interrupts, keyboard

interrupts, etc.

2.1.1 Handling Internal Exceptional Situations

Since internal exceptions are caused by the program itself, they must be

satisfied to allow for the successful execution of the program. When the
8

exception detecting hardware detects an exception, an interrupt is gener-

ated. The operating system then responds by executing specialized instruc-

tions to satisfy the exception. These specialized instructions, known as an

interrupt handler, are stored in a read only place in memory. When the

operating system detects an interrupt, it consults its interrupt vector table

(IVT) to determine where in memory the interrupt handler is located. The

operating system then saves state, fetches and executes the interrupt han-

dler with privileges enabled.

Software managed interrupts are blocking, i.e. they require the processor

to stop fetching program instructions, fetch and execute handler instruc-

tions, and then continue fetching and executing the user program. An alter-

native approach is to have the exception handled by dedicated hardware,

and allow the for the parallel execution of the user program [16]. Excep-

tions that are hardware managed benefit solely in the fact that they are non-

blocking, i.e. the user program can continue executing while the exception

is being handled.

2.1.2 Issues with Interrupt Handling

Consider a basic processor model where a new instruction is fetched and

executed only when the previous instruction has finished execution. With

this architectural model, as soon as the processor executes the instruction,
9

it knows whether or not it has caused an exception. If the instruction causes

an exception, the processor stops fetching program instruction, handles the

exception by executing the appropriate handler. Once the processor has fin-

ished executing the handler, it can then continue fetching and executing

program instructions.

Handling an interrupt in the case of a pipelined or superscalar model is

not as easy as a basic processor model. This is because there is not just one

instruction, but many instructions in the process of execution. Since the

processor temporarily stops fetching program instructions and fetches the

interrupt handler, it is of extreme importance to save processor state restore

it once execution of the handler is finished.

2.1.2.1 Saving the Machine State

Saving the machine state usually involves saving the state of the register

file, the address of the next user instruction to fetch (i.e. the PC). Saving

the state of the register file is necessary if the interrupt handler uses the

same registers as the user program. If the register file isn’t saved, the han-

dler could possibly overwrite existing register values, and when the user

program is restored, it will have the wrong data to work with. Modern

microprocessors overcome this overhead by using a dedicated set of regis-

ters for the interrupt handler. Thus any change to the register file while exe-
10

cuting the interrupt handler is only to the handler registers and not the user

registers [13].

2.1.2.2 When Should an Interrupt Be Handled?

Since modern superscalar processors improve performance and through-

put by executing instructions out of order, exception handling becomes

non-trivial. If the exception is handled immediately (i.e. imprecisely), the

processor will not only have to remember the PC and the state of the regis-

ter file, but will also have to remember the entire state of the pipeline. This

is because the incoming interrupt handler will step through and overwrite

the different pipeline registers. Saving the pipeline state becomes highly

expensive especially with the growing trends in the number of pipeline

stages. Additionally, the overhead can be an utter waste if the exception

was handled for an instruction that was down a speculative path, meaning

an instruction past a branch that hasn’t been resolved yet. If the branch hap-

pens to mispredict, then the interrupt should never have been handled.

Thus, to avoid the overheads of handling an interrupt imprecisely, an

interrupt should be handled only if its absolutely sure that the exception

wasn't down a speculative path. One is absolutely sure that an instruction is

not speculative if the instruction in question is being committed to the reg-
11

ister file. Thus, to avoid speculative exception handling, exceptions should

be handled at instruction commit time, i.e. precisely.

2.2 Precise Interrupts

An interrupt is precise if the state saved is consistent with the basic pro-

cessor model, i.e. the sequential model [15, 20]. To be more specific, the

interrupt is not handled speculatively but in program order and follows the

following conditions:

• All instructions preceding the exception causing instruction have

finished execution and have committed state.

• All instructions after the exception causing instruction have NOT

committed state. They could have finished execution.

• The exception causing instruction may or may not have finished

execution dependant on the exception class.

 If the stated conditions are met, then the interrupt is said to be precise.

However, if the interrupt doesn't satisfy these conditions, then the interrupt

is imprecise.

2.2.1 Implementing Precise Interrupts

To ensure that an interrupt is not handled speculatively, before retiring an

instruction, the processor checks to see if the instruction in question has

caused an exception or not. If the processor sees that the instruction caused

an exception, it:
12

• Saves the state, and the exceptional PC. The exceptional PC depends

on the exception class. Certain interrupts, such as TLB interrupts,

require the exception causing instruction to re-execute and thus

cause the hardware to set exceptional PC to be the PC of the

exception causing instruction. Other interrupts, such as I/O

interrupts, set the exception PC to be the PC of the next instruction

after the exception causing instruction.

• Set the PC to the address of the interrupt handler, enable privileges,

and fetch and execute the handler.

• Once it has finished executing the handler, the processor will restore

the exceptional PC and continue executing program instructions.

To allow for precise interrupts, processors can force in order execution of

instructions. This would be ideal if the frequency of interrupts is extremely

high. However, if exceptions don't occur very often, there is a significant

performance loss with in order execution.

If out of order execution is allowed, instructions leave the pipeline in a

different order than there were brought in. To maintain precise interrupts,

the processor must somehow keep track of the original order of instructions

before sending them to functional units. Special hardware data structures

and techniques have been mentioned [20], the most commonly used is the

reorder buffer.
13

2.2.2 Reorder Buffer (ROB)

A reorder buffer (ROB) is a circular buffer, basically a queue, of entries

with a head and tail pointer (see Figure 2.1). The head and tail pointer both

point to entries within the reorder buffer. When the processor fetches new

instructions, they are queued at the tail of the reorder buffer. During the

retire phase, the processor checks if instructions at the head are ready to

retire, if so, it commits their state and moves the head pointer down. Retir-

ing from the head of the reorder buffer allows for in order commit. The

entries between the tail and head are empty slots.

Each reorder buffer entry keeps track of the entire state of an instruction:

validity, pipeline state, destination register, result, operands, operand

sources, exception flags, etc. Instructions are fetched into the reorder

Fig. 2.1. Reorder Buffer (ROB). A hardware data structure, essentially a circular
queue, used to maintain the program order of instructions. New instructions are fetched in
at the tail, and are retired from the head. Instructions are issued from the ROB to
functional units. Each ROB entry holds the entire state of an instruction as shown. Since
the ROB maintains the actual program order of instructions, it serves as good purpose for
precise interrupts

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

 ROB10

ROB5
ROB6

ROB0

ROB7

TAIL

HEAD

Empty Slots
Queue new

instructions

Retire old
instructions

Privilege Bit

Exception Type
Instruction
Operands
Pipeline State
RegA Ready
RegB Ready
RegA Src
RegB Src
Destination
ALU Result

Branch Taken

Offset Value

Valid
14

buffer, the appropriate reorder buffer entries are set during the decode

phase. When the dependencies of instructions are resolved, they are sent to

execution units from the reorder buffer, the results are then written back

into the reorder buffer entry. If an instruction causes an exception, the fact

is noted in the reorder buffer entry. During the retire stage, the processor

checks to see if there are instructions at the head waiting to retire. If the

instruction at the head is ready to retire and the exception flag is not set, the

processor commits the state of the reorder buffer entry to the global state.

However, if the processor detects that the instruction caused an exception,

the processor saves state, flushes the reorder buffer and executes the inter-

rupt handler. After the handler has finished execution, the processor then

resumes fetching user instructions. The reorder buffer thus allows in order

committing of user instructions and at the same time allows for precise

interrupt handling.
15

 Chapter 3

INTERRUPTS IN MODERN MICROPROCESSORS

The use of interrupts in modern microprocessors has been increasing

drastically. This is because they are being used to support normal or rela-

tively frequent activities such as garbage collection, profiling, and virtual

memory. This chapter discusses how the increase in the use of interrupts

impacts performance of modern microprocessors and suggests a novel

solution to help alleviate the performance loss due to frequent interrupts.

3.1 Traditional Scheme of Interrupt Handling

With the current trends in processor and operating systems design, the

cost of handling exceptions precisely is becoming extremely expensive;

this is because of their implementation. Most high performance processors

typically handle precise interrupts at commit time [15, 17, 21, 25]. When

an exception is detected, a flag in the instruction’s reorder buffer entry is

set indicating the exceptional status. Delaying the handling of the excep-

tion ensures that the instruction didn't execute along a speculative path.

During the retire phase, before committing an instructions state, the excep-

tion flag of the instruction is checked. If the instruction caused an excep-
16

tion and software support is needed, the hardware handles the interrupt in

the following way:

• The ROB is flushed; the exceptional PC is saved; the PC is

redirected to the appropriate handler.

• Handler code is executed, typically with privileges enabled.

• Once a return from interrupt instruction is executed, the exceptional

PC is restored, and the program resumes execution.

3.1.1 Problems with the Traditional Scheme of Handling
Interrupts

With this model of handling interrupts, there are two primary sources of

application-level performance loss: (1) while the exception is being han-

dled, there is no user code in the pipe, and thus no user code executes—the

application stalls for the duration of the handler; (2) after the handler

returns control to the application, all of the flushed instructions are re-

fetched and re-executed, duplicating work that has already been done.

Since most contemporary processors have deep pipelines and wide issue

widths, there may be many cycles between the point that the exception is

detected and the moment that the exception is acted upon. Thus, as the time

to detect an exception increases, so does the number of instructions that

will be re-fetched and re-executed [17]. Clearly, the overhead of taking an
17

interrupt in a modern processor core scales with the size of the reorder

buffer, pipeline depth, issue-width, and each of these is on a growing trend.

3.2 In-line Interrupt Handling - A Novel Solution

If we look at the two sources of performance loss (user code stalls during

handler; many user instructions are re-fetched and re-executed), we see that

they are both due to the fact that the ROB is flushed at the time the PC is

redirected to the interrupt handler. If we could avoid flushing the pipeline,

we could eliminate both sources of performance loss. This has been

pointed out before, but the suggested solutions have typically been to save

the internal state of the entire pipeline and restore it upon completion of the

handler. For example, this is done in the Cyber 200 for virtual-memory

interrupts, and Moudgill & Vassiliadis briefly discuss its overhead and

portability problems [15]. Such a mechanism would be extremely expen-

sive in modern out-of-order cores, however; Walker & Cragon briefly dis-

cuss an extended shadow registers implementation that holds the state of

every register, both architected and internal, including pipeline registers,

etc. and note that no ILP machine currently attempts this [25]. Zilles, et al.

discuss a multi-threaded approach, where at the time an exception is

detected, the processor spawns a new thread to fetch and execute the inter-
18

rupt handler [33]. The scheme works effectively, but requires the processor

architecture to allow multiple threads executing in parallel.

We are interested instead in using existing out-of-order hardware to han-

dle interrupts both precisely and inexpensively. Looking at existing imple-

mentations, we begin by questioning why the pipeline is flushed at all—at

first glance, it might be to ensure proper execution with regard to privi-

leges. However, Henry has discussed an elegant method to allow privileged

and non-privileged instructions to co-exist in a pipeline [9]; with a single

bit per ROB entry indicating the privilege level of the instruction, user

instructions could execute in parallel with the handler instructions.

If privilege level is not a problem, what requires the pipe flush? Only

space: user instructions in the ROB cannot commit, as they are held up by

the exceptional instruction at the head. Therefore, if the handler requires

more ROB entries than are free, the machine would deadlock were the pro-

cessor core to simply redirect the PC without flushing the pipe. However,

in those cases where the entire handler could fit in the ROB in addition to

the user instructions already there, the processor core could avoid flushing

the ROB and at the same time avoid such deadlock problems.

Our solution to the interrupt problem, then, is simple: if at the time of

redirecting the PC to the interrupt handler there are enough unused slots in
19

the ROB, we in-line the interrupt handler code without flushing the pipe-

line. However, if there aren’t sufficient empty ROB slots, we handle the

interrupt as normal. If the architecture uses reservation stations in addition

to a ROB [7, 26] (an implementation choice that reduces the number of

if (ROB[head].exception) {
 - save state and exceptional PC
 - flush ROB
 - set PC to exceptional handler

 - fetch handler
 - enable privileges

}

if (ROB[head].exception) {
if (# empty slots >= HLEN) {
- save nextPC
- set mode to INLINE

}
else {

- save state and exceptionalPC
- flush ROB

}
- set PC to exceptional handler
- enable privileges
- fetch handler
if (mode == INLINE &&

all of handler fetched) {
- restore nextPC, fetch user code

}
- execute handler
if (mode == INLINE &&

exception handled) {
- undo same exceptions in ROB

}
if (mode != INLINE) {
- restore state
- restore exceptionalPC

}
}

(a) Traditional Method (b) In-line Method

- restore exceptional PC
- continue fetching user code

 - execute handler

Fig. 3.1. Interrupt Handling (Traditional vs. In-line). The traditional method of
handling an interrupt, and the proposed scheme of in-lining an interrupt handler.
20

result-bus drops), we also have to ensure enough reservation stations for

the handler, otherwise handle interrupts as normal.

3.3 In-lining Translation Look Aside Buffer (TLB)
Interrupts

Though the in-lined mechanism of handling interrupts is applicable to all

types of transparent interrupts (with relatively short handlers), we focus on

only one interrupt in this paper—that used by a software-managed transla-

tion look aside buffer (TLB) to invoke the first-level TLB-miss handler.

3.3.1 What are TLB Interrupts?

A translation lookaside buffer (TLB) is a hardware data structure that

aids in the quick translation of a virtual address to a physical address.

Whenever a running application generates an address, it is a virtual

address. To determine the corresponding location in memory, the operating

system needs to generate the physical address. The physical address is

computed by a walk of the page table. Rather than walking the page table

on each address generated, to speed up address translation the TLB holds

within it recent address translations. If the translation is not present within

the TLB, the exception can be handled in one of two ways: either by soft-

ware or by hardware.
21

A software managed TLB generates an interrupt. The processor, stops

fetching program code, vectors to the TLB miss handler, executes the han-

dler, and then returns back to fetching program code. The TLB miss han-

dler has special operating system level instructions that walk the page table

and fill the appropriate translation within the TLB.

A hardware managed TLB on the other hand does not generate an inter-

rupt. Rather than having software walk the page table and fill the TLB,

dedicated hardware takes care of doing the page table walk and refilling the

TLB. Since no software support is needed, a hardware managed TLB is

significantly faster than a software managed TLB. This is because of a few

reasons:

• The dedicated hardware to fill the TLB does not miss in the

instruction cache, thus it is faster to handle the exception.

• The overhead of flushing the pipeline is avoided.

• In the case of a software managed TLB, no user code executes while

processing the TLB miss. With a hardware managed TLB, user code

executes while the hardware manages the TLB miss.

3.3.2 Software Managed TLB vs. Hardware Managed
TLB

If hardware managed TLBs are significantly faster than software man-

aged TLBs [11, 16], then why not implement all TLB management in hard-

ware? Most modern high-performance architectures use software-managed
22

TLBs (e.g. MIPS, Alpha, SPARC, PA-RISC), not hardware-managed TLBs

(e.g. IA-32, PowerPC), largely because they save hardware and there is

increased flexibility with the software-managed design [12]. With a hard-

ware managed TLB, the page table is fixed, and any future changes

requires non-trivial porting of the operating system code.

3.3.3 Why In-line TLB Interrupts?

Anderson, et al. [1] show TLB miss handlers to be among the most com-

monly executed OS primitives; Huck and Hays [10] show that TLB miss

handling can account for more than 40% of total run time; and Rosenblum,

et al. [18] show that TLB miss handling can account for more than 80% of

the kernel's computation time. Recent studies show that TLB-related pre-

cise interrupts occur once every 100-1000 user instructions on all ranges of

code, from SPEC to databases and engineering workloads [5, 18].

Besides their frequent nature, an additional reason for in-lining of TLB

interrupt handlers is because the handler lengths tend to be short (on the

order of ten instructions) [16, 12] and the handlers also tend to have deter-

ministic length (i.e., they tend to be straight-line code without any

branches)

In-line interrupt handling for software-managed TLBs can ultimately

achieve the same performance as hardware-managed TLBs. Note that hard-
23

ware-managed TLBs have been non-blocking for some time: e.g., a TLB-

miss in the Pentium-III pipeline does not stall the pipeline-only the excep-

tional instruction and its dependents stall [24]. Our proposed scheme emu-

lates the same behavior when there is sufficient space in the ROB, hence

providing lock-up free TLBs. The scheme thus enables software-managed

TLBs to reach the same performance as non-blocking hardware-managed

TLBs without sacrificing flexibility [11].
24

 Chapter 4

IN-LINE INTERRUPT HANDLING

4.1 In-line Interrupt Handling

We present two methods of in-lining the interrupt handler within the reor-

der buffer. Both of our schemes queue new instructions at the tail, and

retire old instructions from the head [20]. If there is enough room between

the head and the tail for the interrupt handler to fit, we essentially in-line

the interrupt by either inserting the handler before the existing user-instruc-

tions or after the existing user-instructions. Inserting the handler instruc-

tions after the user-instructions, the append scheme, is similar to the way

that a branch instruction is handled: the PC is redirected when a branch is

predicted taken, similarly in this scheme, the PC is redirected when an

exception is encountered. Inserting the handler instructions before the user-

instructions, the prepend scheme, uses the properties of the head and tail

pointers and inserts the handler instructions before the user-instructions.

The two schemes differ in their implementations, the first scheme being

easier to build into existing hardware. To represent our schemes in the fol-

lowing diagrams, we are assuming a 16-entry reorder buffer, a four-instruc-

tion interrupt handler, and the ability to fetch, enqueue, and retire two

instructions at a time. To simplify the discussion, we assume all instruction

state is held in the ROB entry, as opposed to being spread out across ROB
25

and reservation-station entries. A detailed description of the two in-lining

schemes follow.

4.1.1 Append In-Line Mode

Figure 4.1 illustrates the append scheme of in-lining the interrupt handler.

In the first state [state (a)], the exceptional instruction has reached the head

of the reorder buffer and is the next instruction to commit. Because it has

caused an exception at some point during its execution, it is flagged as

exceptional (indicated by asterisks). The hardware responds by checking to

see if the handler would fit into the available space-in this case, there are

eight empty slots in the ROB. Assuming the handler is four instructions

long, it would fit in the available space. The hardware turns off user-

instruction fetch, sets the processor mode to INLINE, and begins fetching

Fig. 4.1. Append In-line Scheme. In-line the interrupt handler by fetching the
instructions at the tail of the reorder buffer. The figure shows the in-lining of a 4-instruction
handler, assuming that the hardware fetches and enqueues two instructions at a time. The
hardware stops fetching user-level instructions (light grey) and starts fetching handler
instructions (dark grey) once the exceptional instruction, identified by asterisks, reaches
the head of the queue. When the processor finishes fetching the handler instructions, it
resumes fetching user instructions When the handler instruction handles the exception,
the processor can reset the flag of the excepted instruction and it can retry the operation.

HEAD

TAIL

(a) (b) (c) (d) (e)

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

*** ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

*** ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

*** ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

*** ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9
ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

TAIL

TAIL

TAIL TAIL

HEAD HEAD HEAD HEAD
26

the first two handler instructions. These have been enqueued into the ROB

at the tail pointer as usual, shown in state (b). In state (c) the last of the han-

dler instructions have been enqueued, the hardware then resumes fetching

of user code as shown in state (d). Eventually when the last handler instruc-

tion has finished execution and has handled the exception, the processor

can reset the flag of the excepted instruction and retry the operation, shown

in state (e).

Note that though the handler instructions have been fetched and

enqueued after the exceptional instruction at the head of the ROB, in order

to avoid a deadlock situation (instructions are held up at commit due to the

exceptional instruction at the head of the reorder buffer), the handler must

be allowed to update the state of the exceptional instruction—for example

in the case of a TLB miss, the TLB write instruction should be able to

update the TLB without having to commit. This can be achieved by allow-

ing the TLB to be updated when the TLB write instruction reaches the com-

mit stage (when they are pulled in from the memory pipeline stage into the

commit pipeline stage), and not when it is committing. Though this may

seem to imply out-of-order instruction commit, this does not represent an

inconsistency, as the state modified by such handler instructions is typi-

cally transparent to the application—for example, the TLB contents are

merely a hint for better address translation performance.

The append scheme of in-lining however has certain drawbacks. First of

all, since the handler is brought at the tail of the reorder buffer, the handler
27

instructions have the lowest priority in terms of scheduling. If no instruc-

tion before the handler instructions can be issued, then the handler will be

able to execute, otherwise the handler will have to wait until all previous

independent instructions have finished execution. Thus, the more the num-

ber of independent instructions before the handler instructions, the longer

the wait. Besides this drawback, with the append scheme, the interrupt han-

dler occupies precious space within the reorder buffer. Since the interrupt

handler is only required to perform behind the scenes tasks for the pro-

gram, it would seem befitting for the interrupt handler to “disappear” after

it has done it’s job. The reason being, (1) more user instructions can be

fetched and executed or (2) any exception detected later may not have

enough space to in-line, and possibly could’ve used the in-lined mecha-

nism had the handler instructions not occupied the reorder buffer slots. To

avoid these possible drawbacks, we propose the second scheme of interrupt

in-lining: the prepend scheme.

4.1.2 Prepend In-Line Mode

Figure 4.2 illustrates the prepend scheme of in-lining the interrupt han-

dler. In the first state, [state (a)], the exceptional instruction has reached the

head of the reorder buffer. The hardware checks to see if it has enough

space, and if it does, it saves the tail pointer into a temporary register and
28

moves the head and tail pointer to four instructions before the current head,

shown in (b). At this point the processor is put in INLINE mode, the PC is

redirected to the first instruction of the handler, and the first two instruc-

tions are fetched into the pipe. They are enqueued into the tail of the reor-

der buffer as usual, shown in (c). The hardware finishes fetching the

handler code [state (d)], and restores the tail pointer to its original position,

and continues fetching user instructions from where it originally stopped.

Eventually, when the last handler handles the exception, the flag of the

excepted instruction can be removed and the exceptional instruction may

retry the operation [state (e)]. This implementation effectively does out-of-

order committing of instructions (handler instructions that are fetched after

user instructions, retire before user instructions, however instructions are

Fig. 4.2. Prepend In-line Scheme. In-line the interrupt handler by resetting the
head and tail pointers. The figure shows the in-lining of a 4-instruction handler, assuming
that the hardware fetches and enqueues two instructions at a time. Once the exceptional
instruction, identified by asterisks, reaches the head of the queue, the hardware stops
fetching user-level instructions (light grey), saves the current tail pointer, resets the head
and tail pointers and starts fetching handler instructions (dark grey). When the entire
handler is fetched, the old tail pointer is restored and the normal fetching of user
instruction resumes.

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

*** ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

*** ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

*** ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9

*** ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

ROB1
ROB2
ROB3
ROB4

ROB8
ROB9
ROB10
ROB11
ROB12
ROB13
ROB14
ROB15

ROB5
ROB6

ROB0

ROB7

HEAD

TAIL

(a) (b) (c) (d) (e)

TAIL

HEAD
HEAD

TAIL

HEAD

HEAD

TAIL

TAIL
29

still committed in ROB order), but again, since the state modified by such

instructions is transparent to the application, there is no harm in doing so.

Unlike the append scheme, in the prepend scheme the handler instruc-

tions are brought physically “ahead” of all user instructions, thus giving

them the highest priority in terms of scheduling. Since the handler instruc-

tions are at the head of the reorder buffer and can retire and update state,

like the append scheme, it isn’t required for the handler instructions to

update state early, i.e. when they reach the commit stage (when they are

pulled in from the memory pipeline stage into the commit pipeline stage),

they can update state while they are committing. Since handler instructions

commit their state, this allows for the prepend scheme to restore the occu-

pied space within the reorder buffer, thus making room for more user

instructions to execute or allow room for subsequent interrupt in-lining.

4.1.3 Append Scheme Vs. Prepend Scheme

At first glance, the append scheme and prepend scheme seem to be very

similar and that they should have almost identical behavior. However, the

implementation differences between these two schemes may show behav-

ior that is unexpected. The schemes differ in terms of the location where

the interrupt handler is in-lined. With the append scheme, the interrupt han-

dler is embedded into the user code, whereas with the prepend scheme, the

interrupt handler is brought physically before all user instructions. The fact
30

that the append scheme occupies reorder buffer space and prepend scheme

restores the reorder buffer space can allow for the two schemes to behave

differently. Additionally, the problems associated with speculative execu-

tion (e.g. branch mispredicts, load store ordering, etc.) need to be tolerated

by the append scheme as the handler instructions are embedded within user

code, this is discussed further in the next section. Even more, the mere fact

that the handler instructions have different priorities in terms of scheduling

and that handler instructions can “commit” state a few cycles earlier in the

append scheme than the prepend scheme can also allow for noticeable dif-

ferences in terms of performance.

4.2 Issues With Interrupt In-lining

The two schemes presented differ slightly in the additional hardware

needed to incorporate them into existing high performance processors.

Both the schemes require additional hardware to determine if there are

enough reorder buffer entries available to fit the handler code. Since the

prepend scheme exploits the properties of the head and tail pointers, an

additional register is required to save the old value of the tail pointer.

Besides the additional hardware, there are a few implementation issues

concerning the in-lining of interrupt handlers. They include the following:
31

1. The hardware knows the handler length. To determine if the handler will

fit in the reorder buffer, the hardware must know the length of the

handler. If there aren't enough slots in the reorder buffer, the interrupt

must be handled by the traditional method. If speculative in-lining is

used, as mentioned in our future works section, this attribute is not

required, but the detection and recovery from a deadlock must be

incorporated.

2. There should be a privilege bit per ROB entry. Since both user and

kernel instructions coexist within the reorder buffer when in-lining; to

prevent security holes, a privilege bit must be attached to each

instruction, rather than having a single mode bit that applies to all

instructions in the pipe [9].

3. Hardware needs to save nextPC and not exceptionalPC. If the hardware

determines that it can use the in-line scheme, it should save nextPC, i.e.

the PC of the instruction that it was about to fetch had it not seen the

exception. The logic here amounts to a MUX that chooses between

exceptionalPC and nextPC.

4. Hardware needs to signal the exceptional instruction when the handler

is finished. When the handler has finished execution, i.e. the exception

has been satisfied, the hardware must convey this information to the
32

exceptional instruction, and perhaps any other instruction that has

faulted for the same type of exception. For example, a TLB-miss

handler must perform the following functions in addition to refilling the

TLB: (1) undo any TLBMISS exceptions found in the pipeline; and (2)

return those instructions affected to a previous state so that they re-

access the TLB & cache. This does not need a new instruction, nor does

it require existing code to be rewritten. The signal can be the update of

TLB state. The reason for resetting all instructions that have missed the

TLB is that several might be attempting to access the same page—this

would happen, for example, if an application walking a large array

walks into a new page of data that is not currently mapped in the TLB:

every load/store would cause a DTLB miss. Once the handler finishes,

all these would hit the TLB upon retry. Note that there is no harm in

resetting instructions that cause TLB misses due to access to different

pages, because these will simply cause another TLB-miss exception

when they access the TLBs on the second try.

5. After loading the handler, the “return from interrupt” instruction must

be killed, and fetching resumes at nextPC, which is unrelated to

exceptionalPC. When returning from a interrupt handler, the processor

must NOP the “return from interrupt” instruction, and resume fetching
33

at some completely unrelated location in the instruction stream at some

distance from the exceptional instruction.

6. The processor needs to make sure it isn’t already stalled. If at the time

the TLB miss is discovered, the processor will need to make sure it isn't

stalled in one of the critical paths of the pipeline, e.g. register renaming.

A deadlock situation might occur if there aren't enough free physical

registers available to map existing instructions prior to and including

those in the register renaming phase. To prevent this, the processor can

do one of two things: (a) handle the interrupt via the traditional method,

or (b) flush all instructions in the fetch, decode, and map stage and set

nextPC to the earliest instruction in the map pipeline stage. As

mentioned, since most architectures reserve a handful of registers for

handlers to avoid the need to save and restore user state, the handler will

not stall at the mapping stage. In architectures that do not provide such

registers, the hardware will need to ensure adequate physical register

availability before vectoring to the handler code. For our simulations,

we only simulated scheme (a).

7. Branch mispredictions in user code should not flush handler

instructions. If, while in INLINE mode, a user-level branch instruction

is found to have been mispredicted, the resulting pipeline flush should
34

not effect the handler instructions already in the pipeline. This means

that the hardware should overwrite nextPC (described above) with the

correct branch target, it should invalidate the appropriate instructions in

the ROB, and it should be able to handle holes in the ROB contents. The

append scheme will have to account for this, while the prepend scheme

doesn't have to worry about this as all the handler instructions are

physically before the interrupted instruction.

In addition, the in-lined scheme’s interaction with the register-renaming

mechanism is non-trivial. There are several different alternative implemen-

tations of register renaming, and each interacts with this mechanism differ-

ently. For example, a Tomasulo or RUU-style register-renaming

mechanism [22, 21] tags a register’s contents as “invalid” when an instruc-

tion targeting that register is enqueued, and the ID of that instruction (its

reservation station number or its ROB-entry number) is stored in the regis-

ter. When an instruction commits that matches the stored ID, the commit-

ted result is then stored in the register, and the register contents are then

tagged as “valid”.

If an in-lined interrupt handler is going to share the same register space as

normal instructions, this must be modified. In the prepend scheme, because

the handler instructions are enqueued after existing user instructions but

commit before those user instructions, it is possible for the handler instruc-

tions to leave the register file in an incorrect state in which a register that is
35

targeted by an outstanding user instruction is marked “valid”, which will

cause the user instruction’s result to never update the register file. The

append scheme will face a similar problem in the case of branch mispre-

dicts: handler instructions will have an incorrect state of registers.

The easy solution is to reserve registers for kernel use that are never

touched by user code; for example, the MIPS register usage convention

partitions the register file in exactly this fashion (the k0 and k1 registers in

the MIPS TLB-miss handler code listed above are never touched by user

code). The more complex solution, which allows user instructions to share

the register space with kernel instructions, is for an in-lined handler to

remember the previous register state and restore it once the last handler

instruction commits. Note that, if this is the case, then user instructions

cannot be decoded while the handler is executing, otherwise they might

obtain operand values from the handler instructions instead of other user

instructions.

Another register renaming scheme is that of the MIPS R10000 [26], in

which a mapping table the size of the architectural register file points to a

physical register file of arbitrary size. Just as in the Tomasulo mechanism,

it is possible for in-lined handler instructions in a MIPS R10000 register-

renaming implementation to free up physical registers that are still in use.

When an instruction in the R10000 that targets register X is enqueued, a

physical register from the free pool is assigned to that instruction, and the

mapping table is updated to reflect the change for register X. The previous
36

mapping for register X is retained by the instruction, so that at instruction

commit time, that physical register can be placed on the free list. This

works because the instruction in question is a clear indicator of the register

lifetime for register X, because the instruction targets register X, indicating

that the previous contents are dead. Therefore, when this instruction com-

mits, the previous contents of register X held in the previously mapped

physical register can be safely freed. Because in-lined handler instructions

are decoded after and commit before user instructions already in the pipe,

the physical register that a handler instruction frees might belong to a user-

instruction that is in-flight.

Just as in the Tomasulo case, the simple solution to the potential problem

is to provide a set of registers that are used only by the handler instruc-

tions—but they must be physical registers, not necessarily architectural

registers, because otherwise the free pool may become empty, stalling the

handler instructions and therefore putting the processor into a deadlock sit-

uation. Alternatively, the hardware could verify the availability of both suf-

ficient ROB entries and sufficient physical registers before committing

itself to in-lining the handler code. Moreover, a committing interrupt-han-

dler instruction, if in-lined, cannot be allowed to free up physical registers

that belong to user-level instructions. Like the Tomasulo scheme, this can

be avoided if the user and kernel instructions do not use the same architec-

tural registers, and it can be solved by the handler saving and restoring reg-

ister-file state.
37

The hardware requirements otherwise are minimal: one can staple the

scheme onto an existing ROB implementation with a handful of registers, a

CPU mode bit, a privilege bit per ROB entry, and some combinational

logic. Instructions are still enqueued at the tail of the ROB and retired from

the head, and register renaming still works as before. Precedence and

dependence are addressed by design (the in-lining of the handler code).

The most complex issue—that of the scheme’s interaction with the register

renaming mechanism—is that of ensuring correct implementation: In-line

interrupt handling does not preclude a correct implementation coexistent

with register renaming, they simply require a bit of diligent design in the

implementation.
38

 Chapter 5

PERFORMANCE OF LOCK-UP FREE TLBs

5.1 Experimental Methodology

5.1.1 Simulator

Our simulator models an out-of-order processor core similar to the Alpha

21264. It has 64K 2-way L1 instruction and data caches, fully associative

16/32/64/128 entry separate instruction and data TLBs with an 8KB page

size. It can issue up to four instructions per cycle and can hold 80 instruc-

tions in flight at any time. It has a 72-entry register file (32 each for integer

and floating point instructions, and 8 for privileged handlers), 4 integer

functional units, and 2 floating point units. The model also provides 154

renaming-registers, 41 reserved for integer instructions and 41 for floating

point instructions. The model also has a 21 instruction TLB miss handler.

The model doesn't have any renaming registers reserved for privileged han-

dler instructions as they are a class of integer instructions. Therefore, the

hardware must know the handler's register needs as well as the handler’s

length in instructions.

We chose this for two reasons: (1) the design mirrors that of the 21264;

and (2) the performance results would be more conservative than other-

wise.
39

Like the Alpha 21264 and MIPS R10000 [7, 26], our model uses a reor-

der buffer as well as reservation stations attached to the different functional

units—in particular, the floating-point and integer instructions are sent to

different execution queues. Therefore, both ROB space and execution-

queue space must be sufficient for the handler to be in-lined. The page

table and TLB-miss handler are modeled after the MIPS architecture [14,

12] for simplicity.

Fig. 5.1. Alpha 21264 Simulator Model. We use a cycle accurate simulator model of
the ALPHA 21264. The pipeline model consists of a 4-way out-of-order processor core with
an 80-entry reorder buffer, and separate integer, floating point, and load store queues. The
memory model consists of 2-way 64K L1 instruction and data caches, separate fully
associative 128-entry instruction and data TLBs, and an 8 KB page size.

F
E

T
C

H

M
A

P

R
E

A
D

E
X

E
C

W
R

IT
E

R
E

T
IR

E

80-entry

ROB
head

tail

INT QUEUE

FP QUEUE

LD/ST QUEUE

64K 2-Way L1
I-CACHE

128-entry
I-TLB

BRANCH
PREDICTOR

MEMORY
==

64K 2-Way L1
D-CACHE

128-entry
D-TLB

==

EFFECTIVE
ADDRESS

IS
SU

E

REGISTER
FILE

4 INSTRS

PC

processor

F
E

T
C

H

M
A

P

R
E

A
D

E
X

E
C

W
R

IT
E

R
E

T
IR

E

80-entry

ROB
head

tail

INT QUEUE

FP QUEUE

LD/ST QUEUE

64K 2-Way L1
I-CACHE

128-entry
I-TLB

BRANCH
PREDICTOR

MEMORY
==

64K 2-Way L1
D-CACHE

128-entry
D-TLB

==

EFFECTIVE
ADDRESS

IS
SU

E

REGISTER
FILE

4 INSTRS

PC

processor
40

5.1.2 Benchmarks

While the SPEC 2000 suite might seem a good source for benchmarks, as

it is thought to exhibit a good memory behavior, the suite demonstrates

TLB miss rates that are three orders of magnitude lower than those of real-

istic high-performance applications. In his WWC-2000 Keynote address

[2], John McCalpin presents, among other things, the graph shown in Fig-

ure 5.2, which compares the behavior of SPEC 2000 to the following set of

applications that he claims are most representative of real-world high per-

formance programs:

• Linear Finite Element Analysis (3 data sets, 2 applications)

• Nonlinear Implicit Finite Element Analysis (8 data sets, 3

applications)

Fig. 5.2. TLB behavior of SPEC 2000 suite (source McCalpin). McCalpin, in this
graph, compares the TLB behavior of SPEC 2000 to a set of “apps” that, according to him,
truly represent high-performance computing. The TLB behavior of our benchmarks, shown
in circles, emulate the behavior of the real life applications.
41

• Nonlinear Explicit Finite Element Analysis (3 data sets, 3

applications)

• Finite Element Modal (Eigenvalue) Analysis (6 data sets, 3

applications)

• Computational Fluid Dynamics (13 data sets, 6 applications)

• Computational Chemistry (7 data sets, 2 applications)

• Weather/Climate Modelling (3 data sets, 2 applications)

• Linear Programming (2 data sets, 2 applications)

• Petroleum Reservoir Modelling (3 data sets, 2 applications)

The SPEC results are run with a larger page size than the apps, which

would reduce their TLB miss rate, but even accounting for that, SPEC TLB

miss rates are off those of McCalpin’s suite by a factor of at least 10,

largely because SPEC applications tend to access memory in sequential

fashion [28].

McCalpin's observations are important because we will see that our work

suggests that the more often the TLB requires management, the more bene-

fits one sees from handling the interrupt by the in-line method. Therefore,

we use a handful of benchmarks that display typically non-sequential

access to memory and emulate the TLB behavior of McCalpin’s bench-

mark suite (see Figure 5.2). The benchmark applications include quicksort,

red-black, Jacobi, and matrix-multiply. Each of the benchmarks are run

using different memory footprints: small, medium and large. Since all of
42

our benchmarks are array based, a small memory footprint is where the

array element size is 500 bytes, a medium memory footprint is where the

array element is three kilo-bytes, and a large memory footprint is where the

array element is five to six kilobytes. Changing the memory footprints of

these applications may change the nature of these applications, but the

focus here is to attempt to emulate the TLB behavior of McCalpins’ bench-

mark suite.

5.2 Performance of Lock-Up Free TLBs

We first take a look at how often our applications benefit from the in-line

scheme. Our studies show that there are certain limitations to interrupt in-

lining, most importantly available reorder buffer space, and additionally,

the availability of free registers to map instructions within the pipeline. Of

the times where the handler could not be in-lined, the primary reason was

because the pipeline was already stalled due to an insufficient number of

renaming registers. The processor can overcome this hurdle and achieve an

additional performance boost by allowing for separate renaming registers

for handler instructions (like the MIPS architecture does) [14] and at the

same time also allowing for partial flushing of pipeline stages, namely the

stages upto and including the mapping stage. Normally, when a pipeline is
43

flushed, it is done stage by stage, so hardware can use existing logic to

flush only certain stages of a pipeline.

Figure 5.3 shows the limitations of the lock-up free scheme for the differ-

ent benchmarks. We see that matrix multiply and quicksort benefit from in-

lining for about 60-90% and 80-90% of the times respectively. However

jacobi and red black benefit from in-lining for only 25-50% of the time.

SMALL MEDIUM LARGE

Memory Footprint

0

25

50

75

100

P
er

ce
nt

SMALL MEDIUM LARGE

Memory Footprint

0

25

50

75

100

P
er

ce
nt

SMALL MEDIUM LARGE

Memory Footprint

0

25

50

75

100

P
er

ce
nt

SMALL MEDIUM LARGE

Memory Footprint

0

25

50

75

100

P
er

ce
nt

Fig. 5.3. Limitations of Interrupt In-lining. This figure shows the number of times
interrupt in-lining was used, and the reasons why interrupt in-lining could not be used. The
figure shows that space is not an issue, instead the pipeline being stalled due to lack of
renaming registers is the primary reason for not in-lining.

(a) Jacobi (b) Matrix Multiply

(c) Quicksort (d) Red Black

Successfully In-Lined
Insufficient ROB Space
Insufficient Renaming Registers

 16-Entry TLB (Append Mode)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB

16-Entry TLB (Prepend Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

a -
b -
c -
d -

e -
f -
g -
h -

a b c d e f g h
44

The reason why red black and jacobi (including quicksort and matrix mul-

tiply) are not able to in-line the interrupt handler is because the pipeline is

already stalled due to insufficient renaming registers. Red black and jacobi

suffer tremendously because both these benchmarks in their innermost

loops perform a significant amount of arithmetic computation which

exhausts all available renaming registers.

The primary source of performance loss with the traditional method of

interrupt handling is that there exists a significant overhead due to the large

number of instructions flushed. To quantify this hypothesis, Figure 5.4

shows the average number of user instructions flushed when a D-TLB miss

is detected. The x-axis represents the different memory footprint sizes, the

y-axis represents the average number of instructions flushed per D-TLB

miss. In each graph, the first four bars represent 16/32/64/128 entry TLBs

managed by the append in-lined scheme, the next four are for those TLBs

managed by the prepend in-lined scheme, and the last four are for those

TLBs managed by the traditional scheme of handling interrupts (i.e. flush

the ROB and pipeline). The figure shows that on average, with the tradi-

tional scheme of interrupt handling (last four bars), at the time a D-TLB

miss is detected, the reorder buffer is 50-55% full. This observation is

promising in that relatively large interrupt handlers can be in-lined pro-

vided there are enough resources. The benefit of in-lining can be also seen
45

readily from the graphs in Figure 5.4. Both the in-lined schemes signifi-

cantly reduce the number of instructions that are flushed. The figure shows

that both the append and prepend scheme reduce the number of instructions

flushed by 30-95%.

An interesting observation from the graphs is that the number of instruc-

tions flushed is independent of the TLB size. It would seem that increasing

(a) Jacobi (b) Matrix Multiply

(c) Quicksort (d) Red Black

SMALL MEDIUM LARGE

Memory Footprint

0

25

50

75

in

st
ru

ct
io

ns
 f

lu
sh

ed
 /

D
T

B
 m

is
s

SMALL MEDIUM LARGE

Memory Footprint

0

25

50

75

in

st
ru

ct
io

ns
 f

lu
sh

ed
 /

D
T

B
 m

is
s

SMALL MEDIUM LARGE

Memory Footprint

0

25

50

75

in

st
ru

ct
io

ns
 f

lu
sh

ed
 /

D
T

B
 m

is
s

SMALL MEDIUM LARGE

Memory Footprint

0

25

50

75

in

st
ru

ct
io

ns
 f

lu
sh

ed
 /

D
T

B
 m

is
s

Fig. 5.4. Average Number of Instructions Flushed per DTB miss. The traditional
method of handling an interrupt shows that with our 88 entry ROB, at the time the DTLB
miss is detected, the ROB is 40-45% full (40-45 user instructions flushed). This is
promising in that one doesn’t have to restrict themselves to small handlers. Additionally,
we see that in-lining significantly cuts the number of instructions flushed by 30-95%.

 16-Entry TLB (Append Mode)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB

16-Entry TLB (Prepend Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

16-Entry TLB (Traditional Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

a b c d e f g h i j k l

a -
b -
c -
d -

e -
f -
g -
h -

i -
j -
k -
l-
46

the TLB size should reduce the number of instructions flushed, however;

this isn’t the case: the number of instructions flushed can either increase or

decrease. This is because number of instructions flushed on a TLB miss is

dependent on the contents of the reorder buffer which is independent of the

TLB size.

The lock-up-free scheme of handling interrupts allows for user instruc-

tions to execute in parallel with the interrupt handler and also significantly

SMALL MEDIUM LARGE

Memory Footprint

0

0.5

1

1.5

2

2.5

3

3.5

C
yc

le
s

P
er

 I
ns

tr
uc

tio
n

(C
PI

)

SMALL MEDIUM LARGE

Memory Footprint

0

0.5

1

1.5

2

2.5

3

3.5

C
yc

le
s

P
er

 I
ns

tr
uc

tio
n

(C
PI

)

SMALL MEDIUM LARGE

Memory Footprint

0

0.5

1

1.5

2

2.5

3

3.5

C
yc

le
s

Pe
r

In
st

ru
ct

io
n

(C
P

I)

(a) Jacobi (b) Matrix Multiply

(c) Quicksort (d) Red Black

SMALL MEDIUM LARGE

Memory Footprint

0

0.5

1

1.5

2

2.5

3

3.5

C
yc

le
s

Pe
r

In
st

ru
ct

io
n

(C
P

I)

Fig. 5.5. Performance of Interrupt In-lining. This figure compares the performance of
the benchmarks for an ideal TLB, append scheme, prepend scheme, and traditional TLBs.
Both the schemes of in-lining improve performance in terms of CPI by 5-25%.

 16-Entry TLB (Append Mode)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB

16-Entry TLB (Prepend Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

16-Entry TLB (Traditional Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

a b c d e f g h i j k l

a -
b -
c -
d -

e -
f -
g -
h -

i -
j -
k -
l-

δ

Ideal TLBδ -
47

reduces the overhead caused due to the flushing of user instructions. Figure

5.5 compares the performance of an ideal TLB, the lock-up-free schemes,

and the traditional method of interrupt handling.

Figure 5.5 also shows that virtual memory adds a significant amount of

overhead. We see that for medium and large memory footprints, we see a 25-

50% performance degradation from the optimal case—a perfect TLB. This is

to be expected when TLB misses are frequent, as is the case with realistic

applications [28], and it is clearly important to optimize TLB management so

as to reduce this overhead.

The figures show the performance benefit of using lock-up-free TLBs: for

the same-size TLB, execution time is reduced by 5-25%. Another way of

looking at this is that one can achieve the same performance level with a

smaller TLB, if that TLB is lock-up-free. As the figures show, one can usually

reduce the TLB by a factor of four by using a lock-up-free TLB, and still

achieve the same performance as a traditional software-managed TLB.

Thus, we see that lock-up-free TLBs can reduce power requirements con-

siderably: A recent study shows that a significant portion of a microproces-

sor’s power budget can be spent in the TLB [27], even if that microprocessor

is specifically a low-power design. Therefore, any reduction in the TLB’s size

is welcome if it comes with no performance degradation.
48

With respect to the different benchmarks, we see that both matrix multi-

ply and quicksort have significant performance improvements, while red

black and jacobi don’t have an equivalent performance improvement. This

can be explained in the fact that both red black and jacobi weren’t able to

benefit as much from in-lining as did matrix multiply and jacobi (see Fig-

ure 5.3).

Both the schemes provide performance improvements both in terms of

the number of instructions flushed and execution time. However, perfor-

mance results from Figure 5.5 show an unexpected behavior—the append

scheme performs better than the prepend scheme for the different applica-

tions by 2-5%. We had expected that the append scheme would perform

worse than the prepend scheme because it retains space within the reorder

buffer and also the handler instructions had a lower priority in terms of

scheduling. From, Figure 5.3, we see clearly that space was not an issue for

interrupt in-lining, thus the small differences possibly rely on the timing of

execution of the interrupt handler.

The reasons why the append scheme performs better than the prepend

scheme is due to some improvements built into the append scheme. To

allow for the append scheme to work, we needed the exception to be “han-

dled” transparently without having to commit the handler instructions.

Rather than wait for the TLB write instruction to commit and update the
49

TLB, we allowed for the TLB to be updated when the TLB write instruction

“hits” the commit state, i.e. when it moves from the memory stage of the

pipeline to the commit stage. Doing so, prevented the processor from enter-

ing a dead lock state, as instructions are held up at the head of the reorder

buffer by the exceptional instruction. An additional enhancement incorpo-

rated was with respect to branch mispredicts. An issue with regards to the

append scheme, we mentioned earlier, was in the case of branch mispre-

dicts, the append scheme should not flush the embedded handler instruc-

tions, thus allow for “reorder buffer holes”. However, if the exception has

already been handled (for e.g. the TLB has been updated), then the handler

instructions can be flushed along with the other user instructions, thus

avoiding “reorder buffer holes” and at the same time restoring space within

the reorder buffer. Thus, the timing of the TLB update and the enhance-

ment with respect to branch mispredicts both allow for the append scheme

to have behaviors that were unexpected.

The append and prepend scheme also differ with respect to overhead in

terms of the number of user instructions flushed. Results from Figure 5.4

show that for Jacobi, Matrix Multiply, Quicksort (large memory footprint)

and Red Black (large memory footprint) the append scheme flushes fewer

instructions than the prepend scheme. For Jacobi, this can be explained in

the fact that the append scheme benefitted from in-lining more than the
50

prepend scheme (see Figure 5.3). However, for the cases where the append

and prepend scheme benefitted from in-lining equally, or where the

prepend scheme benefitted from in-lining more than the append scheme,

the explanation lies solely in the implementation of the two schemes. With

the append scheme, the handler occupies space within the reorder buffer,

thus reducing the number of user instructions within the reorder buffer.

However, in the case of the prepend scheme, the handler disappears after

having finished it’s job, thus making room for more user instructions to be

within the reorder buffer. For the cases where space was an issue, more

user instructions would be flushed on average in the case of the prepend

scheme, than in the case of append scheme.

The favoring of one scheme over the other depends on which scheme is

easier to integrate into existing hardware. We showed earlier that the

append scheme was easier to build into existing hardware and also sug-

gested the additional minimal logic for the prepend scheme. Both schemes

require the hardware to maintain separate renaming registers for the han-

dler and also require partial pipeline flushing for an additional performance

boost.

We also wanted to see if a correlation exists between an application’s

working-set size (as measured by its TLB miss rate) and the benefit the

application sees from lock-up free TLBs. In addition to running the bench-
51

marks “out of the box,” we also modified the code to obtain different work-

ing-set sizes, for example by increasing the array sizes and data structure

sizes. The results are shown in Figures 5.6 and 5.7, which present a scatter

plot of TLB miss rate to application speedup. The figure first of all shows

that performance is independent of TLB sizes, instead dependent on the

TLB miss rate. We see a clear correlation between the TLB miss rate and

application speedup: the more often that the TLB requires management, the

more benefit one sees from lock-up free TLBs. This is a very encouraging

1e-05 1e-04 1e-03 1e-02 1e-01

TLB miss rate

0

5

10

15

20

25

30

P
er

ce
nt

 S
pe

ed
up

1e-05 1e-04 1e-03 1e-02 1e-01

TLB miss rate

0

5

10

15

20

25

30

P
er

ce
nt

 S
pe

ed
up

1e-05 1e-04 1e-03 1e-02 1e-01

TLB miss rate

0

5

10

15

20

25

30

P
er

ce
nt

 S
pe

ed
up

1e-05 1e-04 1e-03 1e-02 1e-01

TLB miss rate

0

5

10

15

20

25

30

P
er

ce
nt

 S
pe

ed
up

 32-Entry TLB

 64-Entry TLB

128-Entry TLB

(a) Jacobi - Append Mode (b) Jacobi - Prepend Mode

(c) Matrix Multiply - Append Mode (d) Matrix Multiply - Prepend Mode

 16-Entry TLB

Fig. 5.6. TLB miss rate vs. Performance Improvement (Jacobi, Matrix Multiply).
This figure shows that performance is independent of the TLB size, instead is dependant
on the TLB miss rate. The figure shows that the more often the TLB requires management,
the more the benefit the application sees from interrupt in-lining.
52

scenario: the applications that are likely to benefit from in-line interrupt

handling are those that need it the most.

5.3 Energy Savings With Lock-Up Free TLBs

To determine the amount of energy wasted, we first characterize the

properties of the instructions flushed as a result of TLB-miss alone. Figure

5.8. presents important results. Most noticeably, the absolute number of

1e-05 1e-04 1e-03 1e-02 1e-01

TLB miss rate

0

5

10

15

20

25

30

P
er

ce
nt

 S
pe

ed
up

1e-05 1e-04 1e-03 1e-02 1e-01

TLB miss rate

0

5

10

15

20

25

30

P
er

ce
nt

 S
pe

ed
up

1e-05 1e-04 1e-03 1e-02 1e-01

TLB miss rate

0

5

10

15

20

25

30

P
er

ce
nt

 S
pe

ed
up

1e-05 1e-04 1e-03 1e-02 1e-01

TLB miss rate

0

5

10

15

20

25

30

P
er

ce
nt

 S
pe

ed
up

(a) Quicksort - Append Mode (b) Quicksort - Prepend Mode

(c) Red Black - Append Mode (d) Red Black - Prepend Mode

Fig. 5.7. TLB miss rate vs. Performance Improvement (Quicksort, Red Black).
This figure shows that performance is independent of the TLB size, instead is dependant
on the TLB miss rate. The figure shows that the more often the TLB requires management,
the more the benefit the application sees from interrupt in-lining.

 32-Entry TLB

 64-Entry TLB

128-Entry TLB

 16-Entry TLB
53

instructions flushed is very large: the y-axis in the figures indicate the num-

ber of instructions flushed due to a TLB miss for each instruction that is

retired. The graphs show that applications can end up flushing an enormous

portion of the instructions that are fetched speculatively into the pipeline.

The lock-up-free schemes thus creates a great opportunity to save time and

SMALL MEDIUM LARGE

Memory Footprint

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
st

r
F

lu
sh

ed
 P

er
 I

ns
tr

 R
et

ir
ed

SMALL MEDIUM LARGE

Memory Footprint

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
st

r
F

lu
sh

ed
 P

er
 I

ns
tr

 R
et

ir
ed

SMALL MEDIUM LARGE

Memory Footprint

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
st

r
F

lu
sh

ed
 P

er
 I

ns
tr

 R
et

ir
ed

FETCH STAGE
ISSUE STAGE
MEMORY STAGE
RETIRE STAGE

(a) Jacobi (b) Matrix Multiply

(c) Quicksort (d) Red Black

 16-Entry TLB (Append Mode)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB

16-Entry TLB (Prepend Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

16-Entry TLB (Traditional Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

a b c d e f g h i j k l

a -
b -
c -
d -

e -
f -
g -
h -

i -
j -
k -
l -

SMALL MEDIUM LARGE

Memory Footprint

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
st

r
F

lu
sh

ed
 P

er
 I

ns
tr

 R
et

ir
ed

Fig. 5.8. Location of Instructions Flushed due to a TLB miss. This figure shows
the stages in which the instructions were before they were flushed. The y-axis shows the
number of instructions flushed for each instruction retired. In-lining significantly reduces
the number of instructions flushed. Additionally, the graph shows that the majority of the
instructions flushed are relatively early in the pipeline, and about 10-15% in the final
stages.
54

energy by reducing this waste. This can be seen by the effectiveness of the

lock-up free schemes in reducing the number of instructions flushed—the

schemes reduce instructions flushed by 30% or more.

Figure 5.8. also shows where in the pipeline the instructions are flushed.

We see that the bulk of the instructions are flushed relatively early in the

instruction life-cycle, i.e. before they have been executed. However, more

than 50% of the instructions flushed have been decoded, renamed

(mapped), and enqueued into the reorder buffer and execution queues by

the time they are flushed (labeled to be. issued). About 10-15% of the

instructions flushed have already finished execution and are waiting to be

retired or are waiting to access the data cache. The figure thus shows the

significant amount of work wasted and how in-line interrupt handling

effectively reduces the additional overhead in terms of execution.

Even though a majority of the instructions have been flushed relatively

early during their life-cycle, researchers on the Alpha 21264 processor

have shown that simply fetching and mapping instructions is relatively

expensive, together accounting for a fifth of the CPUs total power [30, 31].

The following are the power breakdowns for the 21264, with the IBOX

detailed:

• IBOX: Integer/FP Mapper & Queue, Datapath: 32%

Issue Unit: 50%
55

Map Unit: 23%

Fetch Unit: 23%

Retire Unit: 4%

• MBOX: Memory Controller: 20%

• EBOX: Integer Units (L, R) 16.5%

• DBOX: Dcache 13%

• CBOX: Biu Data & Control Busses: 12%

• JBOX: Icache 6.5%

Using these breakdowns, we computed the power breakdowns for the

21264 by pipeline stage:

• Instruction in Fetch Stage: 13.7%

• Instruction in Issue Stage: 49.2%

• Instruction in Memory Stage: 65.7%

• Instruction (ALU) in Retire Stage: 65.7%

• Instruction (MEM) in Retire Stage: 98.7%

• Retired ALU instruction: 67.0%

• Retired MEM instruction: 100%

With the power breakdowns by pipeline stage, we now quantify the

energy-consumption benefits by using a lock-up-free TLB schemes. Figure

5.9 shows trends in energy savings that are very similar to the performance

benefits (they differ by about 5-10%). An immediately obvious feature of

the data in the Figure 5.9 is the huge amount of energy spent on partially
56

executed instructions that are flushed before they can retire. This is a sig-

nificant result by itself. Today’s high-performance CPUs can waste as

much as quarter of their energy budget on instructions that are ultimately

flushed due to TLB misses alone. Given that we have broken the triple-

digit Wattage rating (Pentium 4 with 0.18 micron technology has rating of

SMALL MEDIUM LARGE

Memory Footprint

0.00

0.50

1.00

1.50

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

SMALL MEDIUM LARGE

Memory Footprint

0.00

0.25

0.50

0.75

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

SMALL MEDIUM LARGE

Memory Footprint

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

SMALL MEDIUM LARGE

Memory Footprint

0.00

0.50

1.00

1.50

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

s)

(a) Jacobi (b) Matrix Multiply

(c) Quicksort (d) Red Black

 16-Entry TLB (Append Mode)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB

16-Entry TLB (Prepend Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

16-Entry TLB (Traditional Mode)
32-Entry TLB
64-Entry TLB
128-Entry TLB

a b c d e f g h i j k l

a -
b -
c -
d -
e -
f -
g -
h -
i -
j -
k -
l -

Retired ALU Instructions
Retired Memory Instructions
Execution of TLB miss handler
Speculatively Flushed User Instructions
Flushed Instructions (Fetch Stage)
Flushed Instructions (Issue Stage)
Flushed Instructions (Memory Stage)
Flushed ALU Instructions (Retire Stage)
Flushed MEM Instructions (Retire Stage)

Fig. 5.9. Energy Distribution of Application. This figure shows the energy
consumption of instructions that were retired, handler instructions, speculative
instructions, and those that were flushed due to a TLB miss. In-lining reduces the energy
wasted in re-fetching and re-executing instructions by 30-90%.
57

100.6 Watts), it seems like the in-lined scheme of handling interrupts is an

obvious candidate for power reductions. We see that the in-lined schemes

reduce the total energy consumption by 5-25% overall, and also reduce the

energy wasted in re-fetching and re-executing by 30-90%, which is very

significant.

The breakdowns indicate what types of instructions contribute to the

energy total. One feature to notice is that the energy used by the TLB miss

handler reduces with growing TLB sizes. This is no mistake; as TLB sizes

decrease, the frequency of invoking TLB-miss handlers increases, and

therefore the number of handler instructions retired by the CPU also

increases. Thus an increase in number of instructions executed results in an

increase in energy used. This is an effect not often talked about—that dif-

ferent runs of the same application on different hardware might execute

different numbers of instructions—but these results demonstrate that it is a

significant effect.

As mentioned earlier, we found that the reduction in performance is

slightly higher than the reduction in energy consumption. Execution time is

reduced because the lock-up free scheme eliminates a significant number

of redundant instructions that would otherwise be re-fetched and re-exe-

cuted. The average joules-per-instruction for these redundant operations is

slightly lower than the average joules-per-instruction for the entire run
58

because many are only partially executed and therefore contribute less than

an average instruction to the total. Therefore, eliminating these instructions

reduces power slightly less than if one eliminated fully-executed instruc-

tions.

An additional overhead in terms of energy wastage is due to those

instructions that were flushed speculatively, i.e. not due to a TLB miss, but

due to branch mispredictions, load store ordering, and other such excep-

tions. The graphs show that about 5-25% of an applications energy budget

is spent in speculative execution, which is a tremendous waste in itself.

Quicksort however spends as much (in fact more) energy in speculative

execution as in retiring the required user instructions. This can be

explained in the fact that quicksort is severely branch dominated, thus in

the case of branch mispredicts the processor will have to frequently flush

the ROB. This additionally explains why quicksort has been able to benefit

from in-line interrupt handling the most. The reorder buffer is relatively

empty, thus the pipeline is not stalled as often due to a lack of renaming

registers.

In conclusion, we see that lock-up free TLBs significantly reduce the

number of instructions flushed by 30-95%, reduce the energy wasted by

30-90% and improve performance and reduce the energy consumed by 5-

25%.
59

 Chapter 6

RELATED WORK

The overheads dealing with the precise interrupt mechanism have been

pointed out before, but the suggested solutions have usually involved sav-

ing the entire state of a the machine or leaning towards an imprecise mech-

anism.

Torng & Day discuss an imprecise-interrupt mechanism that would be

appropriate for handling interrupts that are transparent to application code,

for example TLB-miss interrupts [23]. The system considers the contents

of the instruction window (e.g. the reorder buffer) part of the machine state,

and so this information is saved upon handling an interrupt. Upon exiting

the handler, the instruction window contents are restored, and the pipeline

picks up from where it left off. Though the mechanism is very different the

behavior of this scheme is very similar to in-line interrupt handling in that

instructions are not flushed from the pipe. The only difference is that, in the

in-line interrupt handler mechanism, they never leave the reorder buffer,

and user instructions continue to execute in parallel with handler instruc-

tions.

Qiu & Dubois recently presented a mechanism for handling memory

traps that occur late in the instruction execution cycle [17]. They propose a
60

tagged store buffer and prefetch mechanism to hide some of the latency

that occurs when memory traps are caused by events and structures distant

from the CPU (for example, when the TLB access is performed near to the

memory system, rather than early in the instruction-execution pipeline).

Their mechanism is orthogonal to ours and could be used to increase the

performance of our scheme, for example in multiprocessor systems.

Walker & Cragon [25] and Moudgill & Vassiliadis [15] present surveys

of the area, and both discuss a number of alternatives for implementation of

precise interrupts. Walker describes a taxonomy of possibilities, and

Moudgill looks at a number of imprecise mechanisms.

Keckler et al. [34] present an alternative architecture for SMT processors,

Concurrent Event Handling, that incorporates multi-threading into event

handling architectures. Instead of handling the event in the faulting thread’s

architectural and pipeline registers, the exception handler is forked into it’s

own thread and executes concurrently with the faulting thread. Zilles et al.

in [33] utilized this scheme to handle TLB miss exceptions in SMT proces-

sors. The only difference between this scheme and the in-line scheme is

that the base architecture is different: SMT vs. non-SMT processor archi-

tecture.
61

 Chapter 7

CONCLUSIONS

7.1 Conclusions

The general purpose precise interrupt mechanisms in use for the past few

decades have received very little attention. With the current trends in pro-

cessor and operating systems design, the overhead of re-fetching and re-

executing instructions is severe for applications that incur frequent inter-

rupts. One example is the increased use of the interrupt mechanism to per-

form memory management—to handle TLB misses in today’s

microprocessors. This is putting pressure on the interrupt mechanism to

become more lightweight.

We propose the use of in-line interrupt handling, where the reorder buffer

is not flushed on an interrupt unless there isn’t enough space for the handler

instructions. This allows the user application to continue executing while

an interrupt is being serviced. For our studies, we in-lined the TLB inter-

rupt handler to provide us with lock-up free TLBs. For a software-managed

TLB miss, this means that only those instructions stall that are dependent

on the instruction that misses the TLB. All other user instructions continue

executing in parallel with the handler instructions, and are only held up at

commit (by the instruction that missed the TLB).
62

We present the append and prepend schemes of in-lining of the interrupt

handler. The append scheme temporarily stops fetching user code and

inserts the handler instructions after the user-instructions, thus retiring

them in program order. The prepend scheme however utilizes the head and

tail properties of the reorder buffer and inserts the handler instructions

before the user-instructions, thus retiring them out of fetch order without

any side affects.

With interrupt in-lining, at the time the processor detects an exception, it

first checks if there is enough space within the reorder buffer for the inter-

rupt to be in-lined. If their isn’t enough space, then the processor would

handle the interrupt by the traditional scheme, i.e. flushing the pipeline.

Our studies additionally show another limitation of interrupt in-lining:

pipeline stalls. If the pipeline is already stalled when the exception is

detected, then the processor would lock-up if the mode were changed to

INLINE. For our studies, we noted that the primary cause for the pipeline

being stalled is due to insufficient renaming registers available to map the

existing user instructions in the pipeline.

Our studies show that a lack of renaming registers, and not ROB space, is

the primary reason for not being able to in-line TLB interrupts. A possible

solution to this problem is to allow for partial flushing of the fetch, decode,
63

and map stages of the pipeline, and additionally reserve a set of renaming

registers for handler instructions.

Our studies also show that lock-up free TLBs reduces the overhead due

to the flushing of instructions by 30-95%. This is significant in that the pro-

cessor no longer has to waste time or energy in re-fetching and re-execut-

ing instructions. Rather, it can spend time fetching and executing

instructions independent of the exception causing instruction.

Since the number of instructions flushed is reduced dramatically, this

allows for lock-up free TLBs to provide a performance improvement of 5-

25%. Additionally, we see that one can achieve the same performance level

with a smaller TLB, if that TLB is lock-up-free. Our results show that one can

usually reduce the TLB size by a factor of four by using a lock-up-free TLB,

and still achieve the same performance as a traditional software-managed

TLB.

We also saw that applications that often require TLB management,

receive the most benefit from in-lining and also gained a higher perfor-

mance improvement (about 25-30%). This is a very encouraging scenario:

the applications that are likely to benefit from in-line interrupt handling are

those that need it the most.

The use of lock-up free TLBs doesn’t only help in performance improve-

ment, but also reduces the energy consumption by a similar amount. By not
64

having to re-fetch and re-execute instructions, the processor spends time

doing useful work by executing those instructions independent of the

exception causing instruction. An investigation of the instructions flushed

revealed that about 10-15% of the instructions flushed had already finished

execution, and the bulk of the instructions were waiting to be issued to

functional units. One can easily overlook this fact, but Alpha researchers

show that as much as one fifth of the 21264’s energy consumption is spent

in the fetching, mapping, and queuing of instructions. This is a significant

result by itself. Our studies show that today’s high-performance CPUs can

waste as much as a quarter of their energy budget on instructions that are

ultimately flushed due to TLB misses alone. In-line interrupt handling

reduces this waste by 30-90%. Given that we have broken the triple-digit

Wattage rating (Pentium 4 - 100.6 Watts), it seems like the in-lined

approach of handling interrupts is an obvious candidate for power reduc-

tions.

In conclusion, in-line interrupt handling reduces the two sources of per-

formance loss caused by the traditional method of handling interrupts. In-

line interrupt handling avoids the re-fetching and re-executing of instruc-

tions, and allows for user instructions and handler instructions to execute in

parallel. In-line interrupt handling can be used for all types of transparent

interrupts, i.e. interrupts that perform behind the scenes work on behalf of
65

the running program. One such example is the TLB interrupt. In-lining the

TLB interrupt provides for lock-up free TLBs and reduces the number of

instructions flushed by 30-95%, reduces execution time and energy con-

sumption by 5-25% and reduces the energy wasted by 30-90%.

7.2 Future Work

For the purpose of this thesis, we propose non-speculative interrupt in-lin-

ing, i.e. the hardware knows the length of the interrupt handler (or knows

of an upper limit) before hand. It is possible however to do speculative

interrupt in-lining, where the hardware in-lines the interrupt handler with-

out checking to see if there is enough reorder buffer space. With such a

scheme, the processor will need to be able to detect a deadlock. If the pro-

cessor detects a deadlock, it will flush the pipeline and reorder buffer and

handle the interrupt by the traditional scheme.

Additionally, since interrupt in-lining avoids flushing the pipeline, it is

also possible to handle interrupts speculatively, i.e. one doesn’t need to

wait till commit time to decide on whether or not the interrupt be handled.

With the growing lengths in pipelines, and the fact that modern micropro-

cessors wait to retire instructions in large chunks (for example 4-8 instruc-

tions at a time) the time to handle an interrupt increases. By handling
66

interrupts speculatively, we can allow for exceptional instructions and their

dependencies to finish executing early, thus improving performance.
67

BIBLIOGRAPHY

[1] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska.

“The interaction of architecture and operating system design.” In

Proc. Fourth Int’l Conf. on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’91), April 1991, pp.

108–120.

[2] A. W. Appel and K. Li. “Virtual memory primitives for user pro-

grams.” In Proc. Fourth Int’l Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS’91), April

1991, pp. 96–107.

[3] B. Case. “AMD unveils first superscalar 29K core.” Microprocessor

Report, vol. 8, no. 14, October 1994.

[4] B. Case. “x86 has plenty of performance headroom.” Microprocessor

Report, vol. 8, no. 11, August 1994.

[5] Z. Cvetanovic and R. E. Kessler. “Performance analysis of the Alpha

21264-based Compaq ES40 system.” In Proc. 27th Annual Interna-

tional Symposium on Computer Architecture (ISCA’00), Vancouver

BC, June 2000, pp. 192–202.
68

[6] L. Gwennap. “Intel’s P6 uses decoupled superscalar design.” Micro-

processor Report, vol. 9, no. 2, February 1995.

[7] L. Gwennap. “Digital 21264 sets new standard.” Microprocessor Re-

port, vol. 10, no. 14, October 1996.

[8] D. Henry, B. Kuszmaul, G. Loh, and R. Sami. “Circuits for wide-win-

dow superscalar processors.” In Proc. 27th Annual International Sym-

posium on Computer Architecture (ISCA’00), Vancouver BC, June

2000, pp. 236–247.

[9] D. S. Henry. “Adding fast interrupts to superscalar processors.” Tech.

Rep. Memo-366, MIT Computation Structures Group, December

1994.

[10] J. Huck and J. Hays. “Architectural support for translation table man-

agement in large address space machines.” In Proc. 20th Annual In-

ternational Symposium on Computer Architecture (ISCA’93), May

1993, pp. 39–50.

[11] B. L. Jacob and T. N. Mudge. “A look at several memory-manage-

ment units, TLB-refill mechanisms, and page table organizations.” In

Proc. Eighth Int’l Conf. on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’98), San Jose CA, Octo-

ber 1998, pp. 295–306.
69

[12] B. L. Jacob and T. N. Mudge. “Virtual memory in contemporary mi-

croprocessors.” IEEE Micro, vol. 18, no. 4, pp. 60–75, July/August

1998.

[13] B. L. Jacob and T. N. Mudge. “Virtual memory: Issues of implemen-

tation.” IEEE Computer, vol. 31, no. 6, pp. 33–43, June 1998.

[14] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, En-

glewood Cliffs NJ, 1992.

[15] M. Moudgill and S. Vassiliadis. “Precise interrupts.” IEEE Micro,

vol. 16, no. 1, pp. 58–67, February 1996.

[16] X. Qiu and M. Dubois. “Tolerating late memory traps in ILP proces-

sors.” In Proc. 26th Annual International Symposium on Computer

Architecture (ISCA’99), Atlanta GA, May 1999, pp. 76–87.

[17] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta.

“The impact of architectural trends on operating system perfor-

mance.” In Proc. 15th ACM Symposium on Operating Systems Prin-

ciples (SOSP’95), December 1995.

[18] B. Shriver and B. Smith. The Anatomy of a High-Performance Micro-

processor: A Systems Perspective. IEEE Computer Society Press, Los

Alamitos CA, 1998.
70

[19] M. Slater. “AMD’s K5 designed to outrun Pentium.” Microprocessor

Report, vol. 8, no. 14, October 1994.

[20] J. E. Smith and A. R. Pleszkun. “Implementation of precise interrupts

in pipelined processors.” In Proc. 12th Annual International Sympo-

sium on Computer Architecture (ISCA’85), Boston MA, June 1985,

pp. 36–44.

[21] G. S. Sohi and S. Vajapeyam. “Instruction issue logic for high-perfor-

mance, interruptable pipelined processors.” In Proc. 14th Annual In-

ternational Symposium on Computer Architecture (ISCA’87), June

1987.

[22] R. M. Tomasulo. “An efficient algorithm for exploiting multiple arith-

metic units.” IBM Journal of Research and Development, vol. 11, no.

1, pp. 25–33, 1967.

[23] H. C. Torng and M. Day. “Interrupt handling for out-of-order execu-

tion processors.” IEEE Transactions on Computers, vol. 42, no. 1, pp.

122–127, January 1993.

[24] M. Upton. Personal communication. 1997.

[25] W. Walker and H. G. Cragon. “Interrupt processing in concurrent pro-

cessors.” IEEE Computer, vol. 28, no. 6, June 1995.
71

[26] K. C. Yeager. “The MIPS R10000 superscalar microprocessor.” IEEE

Micro, vol. 16, no. 2, pp. 28–40, April 1996.

[27] T. Juan, T. Lang, and J.J. Navarro. “Reducing TLB power require-

ments.” In Proc. 1997 IEEE International Symposium on Low Power

Electronics and Design (ISLPED’97), Monterey CA, August 1997,

pp. 196-201.

[28] J. McCalpin. An Industry Perspective on Performance Characteriza-

tion: Applications vs Benchmarks. Keynote address at Third Annual

IEEE Workshop on Workload Characterization, Austin TX, Septem-

ber 16, 2000.

[29] A. Jaleel and B. Jacob. “In-Line Interrupt Handling for Software-

Managed TLBs.” Proc. 2001 IEEE InternationalþConference on

ComputerþDesign (ICCD 2001), Austin TX, September 2001.

[30] K. Wilcox and S. Manne. Alpha Processors: A History of Power Is-

sues and A Look to the Future. Compaq Computer Corporation, 2001.

[31] M. K. Gowan, L. L. Biro, D. B. Jackson. “Power considerations in the

design of the Alpha 21264 microprocessor.” In 35th Design Automa-

tion Conference.

[32] A. Jaleel and B. Jacob. “Improving the Precise Interrupt Mechanism

for Software Managed TLB Interrupts” Proc. 2001 IEEE. Internation
72

Conference on High Performance Computing (HIPC 2001), Hydera-

bad, India, December 2001.

[33] C.B. Zilles, J.S. Emer, and G.S. Sohi, “The Use of Multithreading for

Exception Handling”, In Proc. 32nd International Symposium on Mi-

croarchitecture, pp 219-229, Nov. 1999.

[34] Stephen W. Keckler, Andrew Chang, Whay S. Lee, Sandeep Chatter-

jee, and William J. Dally, “Concurrent Event Handling through Mul-

tithreading”, IEEE Transactions on Computers, 48:9, September,

1999, pp 903-916.
73

74

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	CHAPTER 1: THE INTERRUPT PROBLEM 1
	CHAPTER 2: INTERRUPT HANDLING AND REORDER BUFFERS 7
	CHAPTER 3: INTERRUPTS IN MODERN MICROPROCESSORS 16
	CHAPTER 4: IN-LINE INTERRUPT HANDLING 25
	CHAPTER 5: PERFORMANCE OF LOCK-UP FREE TLBs 39
	CHAPTER 6: RELATED WORK 60
	CHAPTER 7: CONCLUSIONS 62
	BIBLIOGRAPHY 68

	LIST OF FIGURES
	Chapter 1
	THE INTERRUPT PROBLEM
	1.1 The Problem
	1. The pipeline and ROB are flushed; exceptional PC is saved, and the PC is set to the appropriat...
	2. The exception is handled with privileges enabled.
	3. Once the interrupt handler has finished execution, the exceptional PC is restored, and the use...

	1.2 A Novel Solution
	1. TLB-miss handlers are invoked very frequently (once per 100-1000 user instructions)
	2. The first-level TLB-miss handlers tend to be short (on the order of ten instructions) [12, 16]
	3. These handlers also tend to have deterministic length (i.e., they tend to be straight-line cod...

	1.3 Results

	Chapter 2
	INTERRUPT HANDLING AND REORDER BUFFERS
	2.1 Interrupts
	2.1.1 Handling Internal Exceptional Situations
	2.1.2 Issues with Interrupt Handling
	2.1.2.1 Saving the Machine State
	2.1.2.2 When Should an Interrupt Be Handled?

	2.2 Precise Interrupts
	2.2.1 Implementing Precise Interrupts
	2.2.2 Reorder Buffer (ROB)
	Fig. 2.1. Reorder Buffer (ROB)

	Chapter 3
	INTERRUPTS IN MODERN MICROPROCESSORS
	3.1 Traditional Scheme of Interrupt Handling
	3.1.1 Problems with the Traditional Scheme of Handling Interrupts

	3.2 In-line Interrupt Handling - A Novel Solution
	Fig. 3.1. Interrupt Handling (Traditional vs. In-line)

	3.3 In-lining Translation Look Aside Buffer (TLB) Interrupts
	3.3.1 What are TLB Interrupts?
	3.3.2 Software Managed TLB vs. Hardware Managed TLB
	3.3.3 Why In-line TLB Interrupts?

	Chapter 4
	IN-LINE INTERRUPT HANDLING
	4.1 In-line Interrupt Handling
	4.1.1 Append In-Line Mode
	Fig. 4.1. Append In-line Scheme.

	4.1.2 Prepend In-Line Mode
	Fig. 4.2. Prepend In-line Scheme.

	4.1.3 Append Scheme Vs. Prepend Scheme

	4.2 Issues With Interrupt In-lining
	1. The hardware knows the handler length. To determine if the handler will fit in the reorder buf...
	2. There should be a privilege bit per ROB entry. Since both user and kernel instructions coexist...
	3. Hardware needs to save nextPC and not exceptionalPC. �If the hardware determines that it can u...
	4. Hardware needs to signal the exceptional instruction when the handler is finished. When the ha...
	5. After loading the handler, the “return from interrupt” instruction must be killed, and fetchin...
	6. The processor needs to make sure it isn’t already stalled. If at the time the TLB miss is disc...
	7. Branch mispredictions in user code should not flush handler instructions. If, while in INLINE ...

	Chapter 5
	PERFORMANCE OF LOCK-UP FREE TLBs
	5.1 Experimental Methodology
	5.1.1 Simulator
	Fig. 5.1. Alpha 21264 Simulator Model

	5.1.2 Benchmarks
	Fig. 5.2. TLB behavior of SPEC 2000 suite (source McCalpin)

	5.2 Performance of Lock-Up Free TLBs
	Fig. 5.3. Limitations of Interrupt In-lining
	Fig. 5.4. Average Number of Instructions Flushed per DTB miss
	Fig. 5.5. Performance of Interrupt In-lining
	Fig. 5.6. TLB miss rate vs. Performance Improvement (Jacobi, Matrix Multiply)
	Fig. 5.7. TLB miss rate vs. Performance Improvement (Quicksort, Red Black)

	5.3 Energy Savings With Lock-Up Free TLBs
	Fig. 5.8. Location of Instructions Flushed due to a TLB miss
	Fig. 5.9. Energy Distribution of Application

	Chapter 6
	RELATED WORK

	Chapter 7
	CONCLUSIONS
	7.1 Conclusions
	7.2 Future Work

	BIBLIOGRAPHY

